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1. INTRODUCTION

Milk being the major nutritional source in mammalian neonates, is not only a food source but also
a bioactive fluid. Milk contains many compounds with a role in early development, immune system
formation, and microbial implantation in the infant gut [1]. Among these components, milk
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oligosaccharides (MOs) have received growing interest from scientists because of their multidirectional
biological activities. These glycan’s, made up of a number of units of different monosaccharides such as
glucose, galactose, N-acetyl glucosamine, fucose, and sialic acid [2], are not digestible by the host but are
selectively consumed by gut commensal bacteria, making them effective prebiotic compounds [3]. For
human milk oligosaccharides (HMOs), in-depth research has shed light on their critical functions in infant
health, such as gut microbiota modulation, defense against pathogens, promotion of brain development,
and immune response enhancement [4], [5]. HMOs are the third most concentrated solid constituent of
human milk, following lactose and lipids, with more than 200 structurally unique forms characterized to
date. This structural heterogeneity is due to differences in glycosidic linkages [6], polymerization levels,
and terminal modifications like fucosylation and sialylation, which make them heterogeneously functional.
Previously, animal milk oligosaccharides, like those of bovine, caprine, ovine, and buffalo milk, were
nutritionally less important as they were found in lesser quantities and with more basic structures when
compared to HMOs. Nonetheless, recent advancements in mass spectrometry and liquid chromatography
analysis have shown that animal milks too have a range of MOs, structurally or functionally similar to some
extent to HMOs [7], [8] For example, many sialylated and neutral core structures in goat and cow milk have
similarities to those in human milk, opening possibilities for their use as infant formula supplement and
functional food ingredients [9].

a. Evolutionary Perspective and Comparative Glycomics

The evolutionary history of milk oligosaccharides points towards their phylogenetically conserved
function in mammalian biology. Although it is humans who have evolved to make a highly diversified and
rich set of oligosaccharides in milk, possibly as an adaptation to extended infant dependency and
susceptibility to microbes, other animals like bovines and caprines have adopted more reduced milk
oligosaccharide profiles adequate for their shorter neonatal development windows. Comparative glycomic
analysis indicates that although human milk has 50-80% fucosylated oligosaccharides, bovine milk yields
trace of fucosylated species [9]. Goat milk, however, has a greater proportion of sialylated oligosaccharides
compared to cow milk and therefore comes across as the nearest substitute to HMOs in functional glycan
content [6].

b. Compositional Profiles Across Animal Species

The concentration and composition of milk oligosaccharides vary widely among species. Human
milk contains between 5-15 g/L of oligosaccharides, depending on factors such as genetics (secretor vs.
non-secretor status), lactation stage, and maternal nutrition. In contrast, bovine milk contains only 0.05-
0.3 g/L of milk oligosaccharides, though it is available in large volumes, making it an attractive raw material
for industrial-scale oligosaccharide extraction [6]. Goat and sheep milk have comparatively greater
concentrations (0.25-0.6 g/L), and their oligosaccharide compositions are more abundant in sialylated and
neutral non-fucosylated structures, some of which have mimicked functionality of important HMOs such as
3'-sialyllactose and 6'-sialyllactose. The goat milk has more than 30 different oligosaccharide structures,
some of which were considered unique to human milk [10], [11]. Buffalo milk, while less extensively
studied, has been found to harbour complex sialylated oligosaccharides with suspected
neurodevelopmental and anti-inflammatory activity.

c. Biosynthesis and Structural Diversity

Milk Milk oligosaccharides are biosynthesized in mammary epithelial cell Golgi apparatus by the
concerted activity of glycosyltransferases that append monosaccharides in defined linkages to lactose (the
central disaccharide) [6], [12]. The structural pattern of species-specific MOs is governed by the relative
abundance of such enzymes as fucosyltransferases (FUT2, FUT3), sialyltransferases (ST3GAL, ST6GAL),
and N-acetylglucosaminyltransferases [13]. In humans, the polymorphism of genes such as FUT2 and FUT3
leads to varying HMO phenotypes, which affect infant disease susceptibility and colonization patterns in
the gut [14]. In animal milk, the restricted occurrence of fucosyltransferases is paralleled by the low
concentration of fucosylated MOs, although certain unusual structures such as lacto-N-fucopentaose
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(LNFP) have been found in minute quantities in cow milk [14], [15]. However, sialyltransferases are
exceptionally active in ruminant animals and are thus responsible for the relative prevalence of sialylated
oligosaccharides such as 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) the former of which is also
under research for its cognitive and anti-infective properties [16].

d. Functional Implications and Health Relevance

In addition to their nutritional innocuity, animal-derived milk oligosaccharides have exhibited
prebiotic, antimicrobial, anti-inflammatory, and cognition-enhancing activities in vitro and in vivo [13],
[15]. For instance, it has been demonstrated that bovine-derived 3'-SL and 6'-SL inhibit the adhesion of
pathogenic bacteria like Escherichia coli and Campylobacter jejuni to intestinal epithelial cells [17]. These
oligosaccharides have also been found to stimulate the growth of probiotic bacteria like Bifidobacterium
longum subsp. infantis, albeit less selectively and strongly than HMOs. Caprine milk oligosaccharides,
particularly sialylated structure-rich ones, have been associated with increased brain development and
immune modulation in neonatal animal models [18], [19]. The presence in animal milk oligosaccharides of
N-glycolylneuraminic acid (Neu5Gc), not found in human milk, has questioned their long-term
immunogenicity in humans. Yet, enzymatic and microbiome modifications during processing may soften
these fears [19].

e. Application in Infant Nutrition and Functional Foods

With an increasing demand for HMO analogues, especially for non-breastfed infants, dairy
companies are using more capital to extract, purify, and enzymatically produce animal-sourced milk
oligosaccharides. Most infant formulas on the market today contain galacto-oligosaccharides (GOS) and
fructo-oligosaccharides (FOS), which do not possess the structural sophistication and biological activity of
HMOs [20]. Adding oligosaccharides of animal origin, particularly bovine and caprine sialyllactoses,
provides a viable pathway to bridge the gap between formula and mother's milk. Emerging breakthroughs
in membrane filtration, enzymatic glycoengineering, and microbial biosynthesis are opening doors towards
scalable manufacture of structurally defined animal milk oligosaccharides [20]. The European Food Safety
Authority (EFSA) and U.S. FDA have already approved the utilization of certain milk oligosaccharides, such
as 2'-fucosyllactose and lacto-N-neotetraose, for formula uses, which further pushed the research on their
animal counterparts.

2. RELATED WORK

a. Structural Diversity of Animal Milk Oligosaccharides
Animal-derived milk oligosaccharides differ in monosaccharide composition, glycosidic linkage,
degree of fucosylation, and sialylation as shown in Table 1 and Figure 1.

Table 1. Composition of Milk Oligosaccharides in Different Species

. Estimated .
Milk ] ] Major . . .
Oligosaccharide . Fucosylation | Sialylation Reference
Source Monosaccharides
Count
Glc, Gal, GIcNAc, High (50-
H ~160 Moderat 17],[5
uman * Fuc, Neu5Ac 80%) oderate 1171 151
Glc, Gal, GIcNAc, .
~ 0,
Cow 40 NeuSAc Low (<10%) High [8]
Goat ~55 Similar to cow Moderate High [7]
Similar to ' [9], [27], [28], [12],
Sheep ~35 cow/goat Low High [25], [26], [11],
s [13], [15], [14]
Buffalo ~30 Similar Very Low High [41]

Journal homepage: https://journal. hmjournals.com/index.php/IJAAP


https://journal.hmjournals.com/index.php/IJAAP

International Journal of Agriculture and Animal Production (IJAAP) ISSN: 2799-0907 94

2.1. Key Structural Classes
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Figure 1. Structural Diversity of Monosaccharides

Studies using HPLC-MS and NMR have identified over 50 oligosaccharide structures in goat milk
and a more limited set in bovine milk [20], [21].

b. Biosynthesis and Analytical Advances

Animals trigger biosynthesis of milk oligosaccharides (MOs) within the mammary gland, where a
cascade of glycosyltransferase-catalyzed enzymatic reactions begins from a lactose core [22]. Enzyme after
enzyme adds monosaccharide units of galactose, N-acetylglucosamine, fucose, and sialic acid, as shown in
Figure 2, to it to construct branched and linear oligosaccharide structures. Whereas the core biosynthetic
pathway is evolutionarily conserved, interspecies variability in glycosyltransferase activity and expression
results in milk structural variability from animal to animal [22], [23], [24].

CH,0H on 0|-6 o
OH O. OH OHCJOH Ho -
OH ) 1o
HN__ _CHsg CHS =<
OH l‘/ OH OH CHa
Galactose N-Acetylglucosamine Fucose Sialic acid

Figure 2. Enzyme after Enzyme Adds Monosaccharide Units

Advances in the past few years in analytical technology have dramatically advanced the knowledge
of milk oligosaccharides of animals. Glycomics in combination with proteomics and metabolomics has
enabled high-resolution structural analysis of oligosaccharides such as linkages, anomeric configuration,
and terminal modification. Techniques such as liquid chromatography-mass spectrometry (LC-MS),
matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), and nuclear magnetic resonance
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(NMR) spectroscopy have become an integral component of milk oligosaccharide profiling and quantitation
[23], [24], [25], [26], [27], [28]. They are aided by computational and bioinformatics tools, such as
MilkOligoDB, that classify and compare MO profiles across species, revealing conserved glycan motifs and
enhancing structural annotation [29].

Furthermore, computational simulation and machine learning bear the possibility of developing
predictive models on computational ways of analyzing oligosaccharide biosynthesis pathways. Through
them, one can simulate enzymatic specificity, predict structural isomers, and deduce biosynthetic
constraints and thus gain more insight into interspecies diversity and synthetic mimicry opportunities [30].
These collaborative analytical breakthroughs have furthered not just the understanding of naturally
occurring milk oligosaccharide biosynthesis, but also the effort at bioengineering useful milk
oligosaccharides for nutritional and therapeutic applications [1], [2], [6].

c. Biologic Functions and Health Implications

Animal-derived milk oligosaccharides, although more structurally homogeneous than HMOs, have
been finding a wide range of biological activities with crosstalk bearing important implications on the
health and well-being of animals and human beings. Just by virtue of their very structural resemblance to
HMOs with a more or less particular emphasis being given to prebiotic regulation, antimicrobial defense,
and immunomodulation oligosaccharides have created a big market for themselves in infant nutrition,
functional foods, and therapeutics [1], [2], [6].

Prebiotic Activity

This is probably the best-known activity of animal milk oligosaccharides [1], [2]. Bovine milk
oligosaccharides and goat milk were found to selectively stimulate gut commensal microbiota, especially
the families of Bifidobacterium and Lactobacillus [8], [31]. These microorganisms actually ensure intestinal
homeostasis, enhance gut barrier function, and shield against the colonization of pathogens. Comparative
research has indicated that some bovine milk oligosaccharides have a similar structure to the HMO
structures and can thus mimic the same bifidogenic effects when added to infant formula.

Pathogen Inhibition

Milk oligosaccharides from animal origin also function as decoy receptors by mimicking the
epithelial cell surface glycans naturally targeted by pathogens for adhesion. This antiadhesive nature makes
milk oligosaccharides competitive in inhibiting microbial attachment and hence avoiding the risk of
infection. Interestingly, certain bovine and porcine milk oligosaccharides were reported to inhibit adhesion
and colonization by Escherichia coli, Campylobacter jejuni, Salmonella enterica, and Helicobacter pylori
gastrointestinal pathogens of worldwide prevalence [32], [33]. Such activities have promise for use in milk
oligosaccharide-based anti-infective therapeutic and prophylactic development not dependent on
antibiotics [34].

Immunomodulation

Aside from their antimicrobial and prebiotic action, animal milk oligosaccharides also display
immunomodulatory action that modulates systemic and mucosal immunity. Various studies have
established their capacity to modulate patterns of cytokine secretion, boost regulatory T cell (Treg) activity,
and induce anti-inflammatory responses [34], [35]. All these roles result in a lower frequency of immune-
mediated illnesses like allergies when given early in life. Milk oligosaccharides can have the potential to aid
in neonatal immune system development and may have clinical nutrition and immune therapeutic uses
[20].

3. METHODOLOGY

This review paper accounts for a detailed summary and critical evaluation of some of the current
literature concerning animal-derived milk oligosaccharides (MOs). The method was to collate information
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from well-reputed earlier research papers to discuss and analyze the structure, biosynthesis, and biological
functionalities of milk oligosaccharides [36], [37]. In the most general terms, animal milk oligosaccharides
(MOs) are glucomannans that are found in the milk of mammalian animals such as cows, goats, sheep, and
buffaloes [38], [39]. They are less abundant and less diverse than human milk oligosaccharides but have
been recently recognized for possessing some health benefits, such as being prebiotic, antimicrobial, and
immunomodulatory [40]. This would make them quite attractive for their application in infant formulas
and functional foods.

a. Methodology for Studying Animal Milk Oligosaccharides

Animal milk oligosaccharides are scrutinized and analyzed using a combination of some of the
most advanced analytical methodologies, combined with computational tools and techniques in modern
science. Such identification and quantitation remain unimaginable without these techniques, along with
the deeper understanding of MO structures and their biological functions.

Sample Preparation
The process begins with the extraction of oligosaccharides from raw milk. The procedure usually
encompasses a few steps:

e Removal of Caseins and Fats: Removal of fats and proteins is performed as a preliminary stage. The fats
may be removed by centrifugation, and the proteinaceous components, mainly casein, can be
precipitated by means of acid treatment [7], [8], [9], [10], [11].

e  Whey Separation: The flyweight occurring liquid in the lake of solids is termed whey. It contains the
oligosaccharides along with lactose and some other incomplete proteins [7], [8], [9], [10], [11].

e Purification: The oligosaccharides are then purified from the whey. The plants are usually
chromatography-based, like size-exclusion chromatography or solid-phase extraction, to remove
minute splits like lactose and salts [7], [8], [9], [10], [11].

b. Analytical Techniques
Advanced analytical methods are crucial for deciphering the structural diversity of MOs.

e Liquid Chromatography-Mass Spectrometry (LC-MS): LC-MS is the primary technique used for
separating and identifying MOs. Liquid Chromatography-Mass Spectrometry (LC-MS): LC-MS is the
primary technique used for separating and identifying MOs. LC separates individual oligosaccharides
based on their physicochemical characteristics, while MS provides accurate mass measurements to
identify and characterize the monosaccharide units (e.g., glucose, galactose, N-acetylglucosamine,
fucose, and sialic acid) and composition of each oligosaccharide. LC-MS is also applied to quantify MOs
[32], [33], [34], [35]-

e NMR Spectroscopy: Provides detailed information on structure, such as specific glycosidic linkages
(including 3' or 6' linkages) and anomeric configurations of sugar moieties. It is crucial for establishing
the detailed structure of a novel oligosaccharide [32], [33], [34], [35]-

e Mass Spectrometry with Matrix-Assisted Laser Desorption/lonization Time-of-Flight (MALDI-TOF):
This technique is employed for rapid high-throughput profiling of oligosaccharide mixtures. It yields a
quick "fingerprint" of various MOs in a sample based on their mass-to-charge ratio. This is especially
advantageous for comparative analysis between various animal species [32], [33], [34], [35].

c. Bioinformatics and Computational Analyses
Any large dataset that these analytical methods might generate requires interpretation on
sophisticated computational tools.

e Bioinformatics Tools: Bioinformatics tools such as Databases are employed to compare the structure
of the given MOs with a database of previously recognized oligosaccharides in mammalian organisms.
This helps in revealing conserved motifs of structure and determination of the evolutionary
relationship of MOs [10]
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e  Computational Simulations: Machine learning and molecular modeling are used to simulate the
biosynthetic pathways of MOs. The models can reproduce enzymatic specificity and predict the
hypothetical isomers of an oligosaccharide and why various animals have different MO profiles. The
models also allow for the prediction of hypothetical biological activities of novel MO structures that
have been isolated [10].

4. RESULTS AND DISCUSSION

a. Comparative Analysis of Milk Oligosaccharides

Comparative evaluation of the oligosaccharide content of different types of milk, including human,
cow, and goat milk. Figure 2 highlights considerable disparity in both quantity and structural complexity
of oligosaccharides among species.

e Human Milk (HMOs): Human milk is found to have the highest oligosaccharide count, with over 160
different structures identified. It also has high fucosylation, with 50-80% of its oligosaccharides
containing fucose units. This structural diversity and volume directly relate to the sheer biological
benefits of HMOs, such as their intense prebiotic and anti-pathogen activity [23], [32], [33].

e Cow Milk (BMOs): In contrast, the graph indicates that bovine milk (cow's milk) has a much lower
level of oligosaccharides (around 40 structures) and minimal fucosylation, with less than 10% of its
oligosaccharides containing fucose. Less diversified as they may be, such oligosaccharides, particularly
sialylated structures like 3'- and 6'-sialyllactose, are still of value to human health and are currently
studied as functional food components [23], [41].

e Goat Milk (GMOs): Goat milk falls intermediate between cow and human milk in terms of number of
oligosaccharides and fucosylation. The Figure 3 shows that it is more heterogeneous (with
approximately 55 structures) and moderately fucosylated compared to cow milk. Goat milk thus
emerges as a nearer functionally equivalent alternative to human milk, especially with the abundance
of sialylated oligosaccharides which have been shown to induce gut health and immunity [7], [23].

The comparison, as indicated in Figure 3, highlights the distinct evolutionary history of every
mammalian species, with humans creating a very intricate set of oligosaccharides to sustain the long-term
growth of their young. Although less intricate than that of humans, the individual oligosaccharide profiles
of animal milks present specific advantages for application in infant formula and other functional foods.

The following is a visual contrast of oligosaccharide numbers and fucosylation among major types of milk

Figure 3.

Comparison of Oligosaccharide Diversity and Fucosylation in Animal Milk
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Figure 3. Oligosaccharide Count vs. Fucosylation
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e Human milk exhibits the highest oligosaccharide count and fucosylation.
e Goat milk surpasses cow milk in diversity and functional similarity to HMOs.

b. Applications

Animal-derived milk oligosaccharides (MOs) are increasingly attracting attention with their
promise of translational utility in nutrition, medicine, and biotechnology. Among the most significant areas
of application is the fortification of infant formula. Goat and bovine milk oligosaccharides, based on their
partial structural similarity to human milk oligosaccharides (HMOs), are being extensively investigated as
effective HMO analogues to be used in infant nutrition products [36], [37]. Such analogues could mitigate
the differences between breastfed and formula-fed infants in terms of immune development and
composition of gut microbiota [38]. Other than infant nutrition, animal MOs could be applied
therapeutically. Their anti-inflammatory, immunomodulatory, and anti-adhesive properties render them
suitable for the treatment of gut and respiratory infections [39], [40]. For instance, oligosaccharides
mimicking host cell surface glycans may act as decoys to block pathogen adhesion and thereby reduce
infection outcome or infection severity by E. coli, Campylobacter, and Helicobacter pylori [41], [42].

Synergistically, advances in biotechnology are facilitating scalable production of structurally
intricate milk oligosaccharides, including fucosylated milk oligosaccharides—characteristics generally
more common in HMOs. Microbial fermentation and enzymatic production with directed
glycosyltransferases have both been successful in producing customized oligosaccharides with specific
functional properties [43], [44]. These technologies improve not only availability but also facilitate tailoring
oligosaccharide compositions for specific health effects [44], [45].

5. CONCLUSION

Animal milk oligosaccharides, i.e., from bovine and caprine sources, represent a sector with high
promise for biomedical and nutritional innovation. Irrespective of less structural diversity than HMOs, their
bioactivity and accessibility make them plausible for functional food formulations and infant diet. Future
investigation into glycosylation pathways, as well as microbial synthesis has the potential to curtail the
difference between animal and human milk oligosaccharides in future applications.

Growing interest in oligosaccharides from animal milk (milk oligosaccharides) underscores the
need for coordinated, interdisciplinary strategies to unlock their full biological and therapeutic potential.
The future should involve thorough glycomic analysis of more domesticated and wild mammalian species.
This will uncover new oligosaccharide structures and interspecies variations that can possess special
biological properties. One such pathway concerns synthetic biology and bioengineering approaches toward
the scaling-up of production of rare and complex milk oligosaccharides, especially fucosylated and
sialylated types, short in supply in non-human milk. The organisms can be genetically manipulated (e.g.,
Lactococcus lactis, Escherichia coli, Saccharomyces cerevisiae) along with the in vitro enzyme systems to
produce MOs with maximum precision and yield. Such technologies may enable the development of cost-
effective manufacturing streams, adaptable for pharmaceutical, nutraceutical, and infant formula
industries. Clinical testing in human and animal models must further be undertaken to identify animal milk
oligosaccharide efficacy, safety, and effective dose ranges. Gut health, immunomodulation,
neurodevelopment, and metabolic impacts should be investigated as a function of age and state of health.
Whereas merging Al-guided molecular modeling and systems biology platforms will be capable of further
accelerating functional predictions, structure-activity relationships, and host-microbe interaction
mapping, regulatory policies must also evolve in order to facilitate commercialization of animal-derived
milk oligosaccharides, balancing safety standards and stimulating innovation.
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