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Abstract: Software Effort Estimation is the utmost task in software engineering and project 

management. This is important to estimate cost properly and the number of people required 

for a project to be developed. Many techniques have been used to estimate cost, time, 

schedule and required manpower for software development industries. Nowadays software 

is developed in a more complex way and its success depends on efficient estimation 

techniques. In this research, we have compared five regression algorithms on different 

projects to estimate software effort. The main advantage of these models is they can be used 

in the early stages of the software life cycle and that can be helpful to project managers to 

conduct effort estimation efficiently before starting the project. It avoids project 

overestimation and late delivery. Software size, productivity, complexity and requirement 

stability are the input vectors for these regression models. The estimated efforts have been 

calculated using Ridge Regression, Lasso Regression, Elastic Net, Random Forest and 

Support Vector Regression. We have compared unitedly these models for the first time as 

software effort estimators. R-squared Score, Mean Squared Error (MSE) and Mean 

Absolute Error (MAE) are calculated for these regression models. Ridge, Lasso and Elastic 

Net show comparatively better results among others. 

 

Keywords: Software Effort Estimation, Ridge, Lasso, Elastic Net, Random Forest, Support 

Vector Regression. 
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1. INTRODUCTION 

 

Nowadays software effort estimation is a very exigent phase in the software development 

industry. In Software Development Life Cycle (SDLC), it is very essential to calculate 

estimated effort at the beginning of the cycle. For the planning and strategies of software 

development, it is required to calculate effort consciously cause overestimation and 

underestimation both are major deterrents in this industry. In many cases in the middle of 

project development, the estimation is redefined. Then both the time and cost are wasted only 

for lack of consciousness and technical knowledge. A good estimation can provide a quality 

product in due time with predefined manpower. 

 

There are several models for software effort estimation. These include algorithmic models, 

expert judgment models, estimation by analogy models and soft computing models [1]. 

Algorithmic models are calculated by mathematical formulas which are linked with effort 

drivers to produce an estimation of the project and these are the most popular models in the 

literature. Usually, the main effort driver used in these models is software size (Function Point, 

Source Lines of Code) [2] which needs to be calibrated to local circumstances. 

 

Consultation with experts regarding the effort calculation based on their experiences is related 

to the Expert Judgement model. In this case, the experts share their experiences and use their 

gathered knowledge to estimate effort. Through these models, the final estimation report can 

be reached in a reasonable period and this is the main advantage of this model. 

 

If the proposed project is compared with some previous projects and its effort is estimated by 

observing these previous projects then it will be included as Estimation by Analogy model. All 

required information related to the previous projects is documented. In this case, they should 

have some expertise also who can contribute to comparing the proposed projects with some 

developed projects. This model will not be applicable for any start-up or the companies who 

haven’t completed a good number of historical projects that might be helpful for new proposed 

projects. 

 

Machine learning, neural network, fuzzy logic, genetic algorithm and hybrid models like neuro-

genetic, neuro-fuzzy etc are included in the Soft Computing model. Soft Computing models 

are applied in two main situations. 

 

 It can be applied as standalone models that take several inputs such as software size, 

complexity, requirement stability and then generate an output like software effort. These 

input vectors play a vital role in the development phase. Some papers like [3], [4] are 

available for just determining these factors for making the development activities easy. 

 They can be used to determine some parameters or weights of COCOMO or any other 

algorithmic model’s parameter and weights of function point model. 

 

In this paper, we have implemented five regression algorithms (i.e. Ridge Regression, Lasso 

Regression, Elastic Net, Random Forest and Support Vector Regression) to estimate software 
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effort. We have compared these regression models based on estimated effort and some errors 

formula. We have used these models because in previous many machine learning models and 

other models have been used to estimate effort but these models are not amalgamated. Ridge, 

Lasso and Elastic Net regression models are very new as software effort estimation models. 

We observe Random Forest and Support Vector Regression are often used and that’s why we 

have compared these two models with the other three regression models which are not used 

previously. We have used ISBSG release 11 as the training and testing dataset. Ridge, Lasso 

and Elastic Net show relatively better accuracy among them. 

 

The main contributions of this paper are as follows: 

 We predict software effort by using the five most important regression models which are 

not compared together in the previous analysis. 

 This paper provides acceptable accuracy like R-squared score greater than 97% for Ridge 

and Elastic Net regression models. 

 Though effort estimation depends on various parameters, we use four important parameters 

that can reduce complexity while estimating. 

 We have compared these models with three types of accuracy measures. In our case, Elastic 

Net generates a very admissible R-squared score and minimum 20% better accuracy in 

Mean Absolute Error (MAE) but not optimal for Mean Squared Error (MSE). So, we 

conclude that not a single regression model is the best for all types of accuracy measures. 

So single regression can’t be an optimal estimator if we consider multiple accuracy 

evaluation techniques. 

 

Related Works 

In paper [5], different machine learning algorithms have been implemented. Artificial Neural 

Network, Genetic Algorithm, Fuzzy Logic and other hybrid models have been used here but 

they don’t get always reliable results for any specific algorithm. So, they conclude that no 

specific algorithm should not be preferred. 

 

Paper [6] compares different algorithms (such as Multilayer Perceptron, Radial Basis Function, 

Support Vector Machine) on some datasets from Turkey’s software industry and they also 

conclude that one model cannot produce the best results. In [7], they introduce a machine 

learning approach that has been used as a text processing model which gives a good estimation 

result as well. Paper [8] – [10] estimate effort by applying different Regression models 

including linear and non-linear approaches. 

 

Software effort estimation can be applicable for both agile and non-agile methodologies, from 

[11] we can get the comparative analysis between these two development models. Various 

Machine learning algorithms are implemented in [12] – [14] for productivity analysis and based 

on different features. 

 

The effort has been determined and analysed in [15], [16] considering different sized software 

and company as well. For web-based project estimation [17] Radial Basis Function (RBF) 

kernel technique provides better result for Support Vector Regression than others. In this paper 
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[18], Extreme Learning Machine (ELM) is used as the replacement of Linear Least Squares 

Regression. But only for small projects ELM has been used there. 

 

In [19], [20], it is discussed 4 types of software effort prediction algorithm (MLP, GRNN, 

RBNN & CCNA) and Conclude that RBNN & CCNA give better results according to the 

dataset. It has been applied RBNN and Regression model [21] to estimate effort under 93 

projects dataset of NASA and concludes that RBFNN provides less MRE than regression. 

The paper [22] has described the fault and effort prediction of a project. They have used Rule 

Extraction, Support Vector Machine and also Radial Basis Neural Network for efficient effort 

and fault prediction of a given project. 

 

In [23], has determined the widths of Radial Basis Neural Network performs a vital role for 

better result. The wrong choice of widths gives poor results. In that paper, two methods have 

been described for determining widths. 

 

This paper [24] has been extended the UCP (Use Case Points) model by classifying actors into 

seven groups. The weight proposed for actors varies between 0.5 and 3.5. Moreover, the 

authors proposed four types of use cases and assigned new weights for each use case. Paper 

[25], authors propose RBFNN model for software effort estimation. The model is trained based 

on the k-mean clustering algorithm and is evaluated using the COCOMO 81 dataset. It takes 

too much time to converge when weights are calculated. 

 

In our previous work [26], We have compared Radial Basis Function Neural Network, Extreme 

Learning Machine and Decision Tree based on estimated effort in different sized Software. 

 

2. METHODOLOGY 

 

We are familiarized with Linear and Logistic Regression which are implemented without 

Regularization. But we should use Regularization for getting a better result. In this paper, we 

have used Ridge, Lasso, Elastic Net Regression which are basic regression models with 

Regularization but still they are not used frequently. The overall idea of regression remains the 

same in these models. 

Ridge and Lasso work by penalizing the magnitude of coefficients of features minimizing the 

error between actual and predicted observations. These are called ‘Regularization’ techniques. 

The key difference is in how they assign penalty to the coefficients are regularization and 

minimization objectives. 

 

Ridge Regression performs L2 regularization and Lasso regression performs L1 regularization 

whereas Elastic Net uses both L1 and L2 regularization. We have also used another two 

important Regression algorithms, Random Forest and Support Vector Regression which are 

also good models for prediction analysis. These algorithms are described below in brief. 

We have included pseudocodes of the regression models which have been used to estimate 

effort. The models need some hyperparameters to be implemented. The hyperparameters may 

have different values. These parameters are tuned changing the value and we have finalized the 
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value based on the implemented result of the models. Our included pseudocodes show the final 

value of these parameters like α (alpha) for Ridge and Lasso regression, n estimators for 

Random Forest regression. So, to apprise regarding the value of the hyperparameters and for 

understanding the implementation steps of the regression models, we have added pseudocodes. 

The following sub-sections are described the models and pseudocodes as well. Section 3.1, 3.2, 

3.3, 3,4 and 3.5 discuss Ridge, Lasso, Elastic Net, Random Forest and Support Vector 

Regression respectively. 

 

A. Ridge Regression 

We mentioned before, Ridge Regression performs ‘L2 regularization’. Thus, Ridge Regression 

optimizes the following: Objective = LR objective + α ∗ (sum of square of coefficients) 

Here, LR = Linear Regression and α is the parameter that is used to balance the amount of 

emphasis given for minimizing LR objective vs minimizing the sum of the square of 

coefficients. α can have different values: When α = 0, the objective of Ridge Regression 

becomes the same as Linear Regression; when α = ∞, the coefficients will be zero because 

of increasing the value of α, the coefficients move towards zero; when 0 < α < ∞, the 

coefficients will be somewhere between 0 and ones for Simple Linear Regression. That’s the 

way α impacts the magnitude of coefficients. Any non-zero value of α gives a value that is less 

than Simple Linear Regression. Algorithm 1 shows the pseudocode of Ridge Regression. 

 

Algorithm 1 RIDGE Regression 

1. procedure RIDGE 

2. LOAD TRAINING_DATA 

3. for each dataItem in TRAINING_DATA do 

4. TRAIN the model 

5. ridgeRegression ← RIDGE (alpha = 1 ) 

6. Fit the model 

7. ridgeRegression.fit(dataItem) 

8. end for 

9. LOAD TESTING_DATA 

10. for each dataItem in TESTING_DATA do 

11. PREDICT the result 

12. effort predict ← ridgeRegression. PREDICT (dataItem) 

13. end for 

14. end procedure 

 

B. Lasso Regression 

LASSO stands for Least Absolute Shrinkage and Selection Operator. It performs ‘L1 

regularization’ that means it adds a factor which is sum of absolute value of coefficients in the 

optimization objective. Thus, lasso regression optimizes as follows: Objective = LR Objective 

+ α ∗ (sum of absolute value of coefficients) 

Here, α works similarly to Ridge. In this case, α also can take various values like Ridge such 

that α = 0, ∞ and any value between 0 and ∞. For these values α acts as same as Ridge. The 

pseudocode of Lasso implementation has been given below in Algorithm 2. 
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Algorithm 2. LASSO Regression 

1. procedure LASSO 

2. LOAD TRAINING_DATA 

3. for each dataItem in TRAINING_DATA do 

4. TRAIN the model 

5. lassoRegression ← LASSO (alpha = 1 ) 

6. Fit the model 

7. lassoRegression.fit(dataItem) 

8. end for 

9. LOAD TESTING_DATA 

10. for each dataItem in TESTING_DATA do 

11. PREDICT the result 

12. effort predict ← lassoRegression. PREDICT (dataItem) 

13. end for 

14. end procedure 

 

C. Elastic Net Regression 

Elastic Net Regression is another Regression algorithm that is also a modification of Linear 

Regression. It is known Linear Regression is implemented without Regularization and it suffers 

from overfitting problem and it is not suitable for collinear data. Apart from Ridge and Lasso 

Regression, Elastic Net is developed which is included both L2 and L1 Regularization. As 

Ridge and Lasso have some limitations, we include this model in this paper to get the benefits 

of both Ridge and Lasso at the same time. The cost function for Elastic Net Regression is given 

below: Objective = LR Objective + α ∗ (sum of square of coefficients) + α ∗ (sum of absolute 

value of coefficients). Elastic Net is implemented using Algorithm 3. 

 

Algorithm 3. ELASTIC NET Regression 

1. procedure ELASTIC NET 

2. LOAD TRAINING_DATA 

3. for each dataItem in TRAINING_DATA do 

4. TRAIN the model 

5. elasticNetRegression ← ELASTICNET (alpha = 1 ) 

6. Fit the model 

7. elasticNetRegression.fit(dataItem) 

8. end for 

9. LOAD TESTING_DATA 

10. for each dataItem in TESTING_DATA do 

11. PREDICT the result 

12. effort predict ← elasticNetRegression. PREDICT (dataItem) 

13. end for 

14. end procedure 
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D. Random Forest Regression 

Random Forest is said as an ensemble of decision trees because it is formed by many trees 

which are constructed in a ‘random’ way. This algorithm has some benefits. It takes less 

training time as compared to different algorithms. It can predict accurately even for large 

datasets. Sometimes it maintains accuracy when a portion of the dataset is missed. Random 

Forest Algorithm generally gives better prediction result for Classification than Regression. 

But it is used in the Software Effort Estimation field as a good regressor. 

 

Some points of Random Forest: 

 Each tree is built from a different sample of rows and a different sample of features that are 

selected for splitting each node. 

 Each tree makes its individual prediction. 

 The individual predictions are then averaged to produce a single estimated result. 

 

While implementing Random Forest Regression, the hyperparameter ‘n_estimators’ is tuned. 

We have checked from 1 to 1000 as ‘n estimators’ value and got optimal value 5 for ‘n 

estimators’ parameter. For this reason, the ‘n estimators’ value is selected here as 5. Algorithm 

4 shows the implementation steps of Random Forest Model. 

 

Algorithm 4. Random Forest Regression 

1. procedure RANDOM FOREST 

2. LOAD TRAINING_DATA 

3. for each dataItem in TRAINING_DATA do 

4. TRAIN the model 

5. randomForestRegression ← RandomForestRegressor (n_estimators =5, random_state = 

0) 

6. Fit the model 

7. randomForestRegression.fit(dataItem) 

8. end for 

9. LOAD TESTING_DATA 

10. for each dataItem in TESTING_DATA do 

11. PREDICT the result 

12. effort predict ← randomForestRegression. PREDICT (dataItem) 

13. end for 

14. end procedure 

 

E. Support Vector Regression 

Support Vector Machine is another machine learning algorithm. It is used for both 

Classification and Regression problems. For regression, it is said as Support Vector Regression 

(SVR). SVR works with the same principles as Support Vector Machine (SVM) which is used 

widely for Classification. SVR works with continuous data whereas SVM works with 

categorical data. The main purpose of both algorithms is to reduce the error rate based on a 

predefined threshold. SVR is implemented with different types of kernels such as Linear, 
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Polynomial, Gaussian. We have implemented SVR with Linear Kernel cause our dataset 

contains a linear relationship. SVR model is implemented using Algorithm 5. 

 

Algorithm 5 Support Vector Regression 

1. procedure SVR 

2. LOAD TRAINING_DATA 

3. for each dataItem in TRAINING_DATA do 

4. TRAIN the model 

5. svrRegression ← SVR ( kernel = ’linear’ ) 

6. Fit the model 

7. svrRegression.fit(dataItem) 

8. end for 

9. LOAD TESTING_DATA 

10. for each dataItem in TESTING_DATA do 

11. PREDICT the result 

12. effort predict ← svrRegression. PREDICT (dataItem) 

13. end for 

14. end procedure 

 

Implementation 

We have implemented the five most popular Regression algorithms to estimate software effort. 

We have used Python as our programming language. For comparison of the different errors 

and effort-size relationship in graphical representation, we use matplotlib library of python. 

 

A. Dataset 

In this paper, to analyse effort estimation we have used ISBSG Release 11 [1] dataset. We have 

used the same dataset for every Regression algorithm. We divide the dataset into training and 

testing datasets. We have selected 70% data for training purposes and 30% for testing purposes. 

Each data contains four attributes including ‘Software Size’ which is one of the important 

inputs in the software effort estimation field. Both the training and testing datasets include 

different-sized software from very small to large-sized software. In this dataset, software size 

is measured in ‘UCP’ instead of ‘KLOC’. These both are measuring units of software size. We 

include data for training and testing which have software size that varies from 5 UCP to almost 

4000 UCP. Besides the software size, the dataset contains other attributes as requirement 

stability, complexity and productivity. 

 

B. Flow of Models 

The algorithms which are used in this paper follow the common steps of flow. It contains six 

steps from input to getting output i.e. estimated effort. The model flow is given below in Fig. 

1: 
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Fig. 1. Flow of Models 

 

C. Comparison of Estimated Effort 

In this section, the estimated efforts have been compared and we have shown the comparison 

result through graphical representation. The X-axis of the graph represents Software Size which 

has been measured by UCP and the Y-axis of the graph represents Effort which is measured in 

person-hours. We have compared estimated effort with actual effort for each regression model. 

In the graph, red scattered points represent actual effort and the blue plot represents estimated 

effort. The effort is estimated considering all inputs but only Software Size is included in the 

graphs. The graphs have been displayed in the next part. 

 

D. The Relationship Chart between Effort and Software Size 

The following Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6 have been delineated to make 

comprehensible regarding the comparison of estimated and actual data of all regression models. 

The feasible models are summarized by analysing the graphs. 
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Fig. 2. Comparison graph between Actual and Estimated Effort using Ridge Regression 

 

Fig. 2 shows the comparison between actual effort and estimated effort using Ridge Regression 

based on Software Size. This Regression model maps inputs to output with good accuracy. The 

regression line has been fitted with actual data and produces good efficacy to estimate result. 

After training, we have tested data using Software size from 13 to almost 2500 UCP. The 

average Software Size for testing is 290 UCP. Ridge Regression calculates 97.23% R-squared 

score, 11282187.21 for Mean Squared Error and 2676.68 for Mean Absolute Error. It scores 

the best R-squared and lowest Mean Squared Error. 

 

 
Fig. 3. Comparison graph between Actual and Estimated Effort using Lasso Regression 

 

The result of Lasso Regression is described graphically in Fig. 3. This graph shows us the 

almost same result as Ridge Regression. The proper fit proves the model as a good estimator. 

Its R-squared score is 96.61%, Mean Squared Error is 13800678.03 and Mean Absolute Error 

is 2982.57. 
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Fig. 4. Comparison graph between Actual and Estimated Effort using Elastic Net 
Regression 

 

From Fig. 4 we get the estimated result of Elastic Net Regression. Elastic Net Regression 

algorithm provides more accurate result than Ridge and Lasso Regression. Its Regression line 

is closer to actual data. For different types of error measures, we see Elastic Net efficacy is 

more desirable. The R-squared score is 97.1%, Mean Squared Error is 11794075.88 and its 

Mean Absolute Error is 2110.17. It calculates the lowest Mean Absolute Error among other 

models. 

 
Fig. 5. Comparison graph between Actual and Estimated Effort using Random Forest 

Regression 
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Fig. 5 has been drawn using Random Forest Algorithm. We observe the deviation of the 

Regression line from actual data. It determines comparatively somewhat low accuracy than 

other Regression models. For Ransom Forest R-squared score is 85.87%, Mean Squared Error 

is 57555514.78 and the Mean Absolute Error is 2836.27 
 

 
Fig. 6. Comparison graph between Actual and Estimated Effort using Support Vector 

Regression 
 

From Fig. 6 we observe the estimated effort-size relationship of another popular Regression 

model i.e. Support Vector Regression. Support Vector Regression provides a better result than 

Random Forest but not good as Ridge and Elastic Net. It provides 91.43% R-squared score and 

determines Mean Squared Error and Mean Absolute Error are 34914047.1 and 2307.58 

respectively. 

 

E. Error Calculation 

We have evaluated these algorithms using three types of error measures as metrics. We have 

used R-squared, Mean Absolute Error (MAE) and Mean Squared Error (MSE) to find out the 

feasible algorithms regarding effort estimation among these five regression algorithms.  
 

1) R-squared: R-Squared is a measure of statistical that indicates how much dependent 

variables are varied by the independent variable(s) in a regression model. R-squared values 

range from 0 to 1 and are commonly stated as percentages from 0 to 100. An R-squared of 

100% means that all dependent variables are completely explained by the independent 

variable(s). The formula of R-squared is given below: 

 

R_squared = 1 − (
UV

TV
)                  (1) 

 

Where, UV – Unexplained Variation, TV – Total Variation 
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2) Mean Absolute Error: The Mean Absolute Error (MAE) is the average of all absolute errors. 

The smaller the Mean Absolute Error (MAE), the regression line will be closer to the best fit. 

Depending on testing data, the Mean Absolute Error (MAE) can be large or small. The formula 

is as follows: 

 

MAE =
1

n
 ∑ (| Ee −  Ae|)N

1                   (2) 

 

Where, n = the number of errors, | Ee − Ae|= the absolute error between Estimated and Actual 

Effort. 

 

3) Mean Squared Error: The Mean Squared Error (MSE) is another statistical measure that tells 

how close a regression line is to a set of points. It does this by taking the distances from test 

data to the regression line. These distances are errors of individual data. Then these errors are 

squared and negative signs are removed. The lower the MSE, the better the prediction result. 

 

As it is squared formulae, MSE is also large like MAE depending on testing data. MSE is 

calculated as: 

 

MSE =
1

n
 ∑ (Ee −  Ae)2N

1                   (3) 

 

Where, n = the number of errors, Ee −  Ae = difference between Estimated and Actual Effort. 

 

The graphical views of the error calculation for the implemented algorithms are depicted and 

provided below. 
 

 
Fig. 7. Comparison by R-squared scores 
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Fig.7 shows the comparative result of used regression models by R-squared scores. The graph 

describes that Ridge, Lasso and Elastic Net calculate about the same and better result than 

Random Forest and SVR. 

 

 
Fig. 8. Comparison by Mean Absolute Error 

 
It is clearly visible from Fig.8 that for Mean Absolute Error (MAE) Elastic Net can estimate 

feasible result for effort estimation cause its MAE is relatively very good than others. 
 

 
Fig. 9. Comparison by Mean Squared Error 

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.36.26.42
http://creativecommons.org/licenses/by/4.0/


International Journal of Information Technology and Computer Engineering 

ISSN: 2455-5290  

Vol: 03, No. 06, Oct-Nov 2023 

http://journal.hmjournals.com/index.php/IJITC 

DOI: https://doi.org/10.55529/ijitc.36.26.42 

 

 

 

 

The Author(S) 2023.This Is An Open Access Article Distributed Under The CC BY License. 

(Http://Creativecommons.Org/Licenses/By/4.0/)                                                                  40   

To evaluate by MSE, we observe from Fig. 9 Ridge and Elastic Net both can be good estimators 

cause they calculate less MSE than other regression models used in this paper. 

 

3. CONCLUSIONS 

 

Software Effort Estimation is considered in software industries with great importance. It is 

emergent to estimate effort accurately earlier to avoid last time stress. This paper summarizes 

that a single algorithm cannot estimate optimal effort for all cases in software industries. To 

find the feasible algorithms, we have compared five regression models. The regression models 

have been evaluated by measuring three types of error formulas. It is observed that Elastic Net 

can estimate more accurate result than other models. Apart from Elastic Net, Ridge Regression 

can be a good estimator in the effort estimation field. In the future, hybrid models with multiple 

regression algorithms can be proposed and the implementation of these models might be 

explored with multiple datasets. 
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