
International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 23

Application of Deep Reinforcement Learning (DRL) for

Malware Detection

Mangadevi Atti1, Manas Kumar Yogi2*

1Department of Information Technology, Pragati Engineering College (A), Surampalem,

A.P., India.
2*Department of CSE Pragati Engineering College (A), Surampalem, A.P., India.

Email: 1devikalyan2012@gmail.com

Corresponding Email: 2*manas.yogi @gmail.com

Received: 02 December 2023 Accepted: 16 February 2024 Published: 02 April 2024

Abstract: Malware poses a significant threat to computer systems and networks,

necessitating advanced detection methods to safeguard against potential cyber-attacks.

This paper investigates the application of Deep Reinforcement Learning (DRL) for

malware detection, leveraging its ability to learn complex patterns and behaviours from

raw data. The study employs a DRL framework to train an agent to identify malicious

software based on dynamic features extracted from executable files. A comprehensive

evaluation is conducted using a diverse dataset, encompassing various types of malware

samples. The experimental results demonstrate the effectiveness of the proposed DRL-

based approach in accurately detecting malware, achieving competitive performance

compared to traditional methods and state-of-the-art techniques. Additionally, the paper

discusses the interpretability and scalability of the model, along with potential challenges

and future research directions in applying DRL to cybersecurity.

Keywords: Reinforcement Learning, Attack, Malware, Privacy, Malicious, Machine

Learning.

1. INTRODUCTION

Malware, including viruses, worms, Trojans, and ransomware, continues to be a pervasive

threat to computer systems and networks worldwide. Traditional signature-based detection

methods, while effective against known malware, struggle to keep pace with the rapid

proliferation of new and sophisticated malware variants. As a result, there is a growing need

for more advanced and adaptive malware detection techniques.

Deep Reinforcement Learning (DRL) has emerged as a promising approach for tackling

complex decision-making problems in various domains, including cybersecurity. Unlike

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 24

traditional rule-based or signature-based methods, DRL-based approaches have the potential

to learn from raw data and dynamically adapt to evolving threats without relying on

predefined rules or patterns [1].

The motivation for using DRL in malware detection lies in its ability to leverage large-scale

datasets to learn complex patterns and behaviours indicative of malware. By formulating

malware detection as a sequential decision-making problem, DRL models can autonomously

explore and exploit features within executable files to differentiate between benign and

malicious software. Furthermore, DRL offers the flexibility to handle diverse and evolving

malware families, making it well-suited for detecting previously unseen threats.

Overview of Malware Detection Techniques and Challenges:

Traditional malware detection techniques can be broadly categorized into signature-based,

behavior-based, and anomaly-based methods. Signature-based detection relies on predefined

patterns or signatures of known malware to identify malicious software. While effective

against known threats, signature-based methods are vulnerable to zero-day attacks and

polymorphic malware variants.

Behavior-based detection monitors the runtime behavior of software to identify suspicious

activities indicative of malware. This approach offers greater flexibility than signature-based

methods but may suffer from high false-positive rates and limited scalability.

Anomaly-based detection identifies malware by flagging deviations from normal system

behavior. While capable of detecting previously unseen threats, anomaly-based methods

often struggle to distinguish between benign anomalies and genuine attacks, leading to a high

false-positive rate.

Despite advancements in malware detection techniques, several challenges persist. These

include [2-4]:

1. Polymorphic and Evolving Threats: Malware authors continuously develop new evasion

techniques, such as polymorphism and obfuscation, to evade detection by traditional

methods.

2. Zero-Day Attacks: Signature-based methods are ineffective against zero-day attacks, which

exploit previously unknown vulnerabilities.

3. Adversarial Attacks: Malware authors may employ adversarial techniques to manipulate or

evade detection by machine learning-based approaches, including DRL models.

4. Scalability and Resource Constraints: Malware detection systems must handle large

volumes of data in real-time while minimizing computational overhead and resource

consumption.

Addressing these challenges requires innovative approaches that can adapt to the dynamic

and evolving nature of malware threats. DRL-based malware detection offers a promising

avenue for overcoming these challenges by leveraging the power of deep learning to learn

and adapt to emerging threats in real-time.

Literature Review

Traditionally, malware detection relied on signature-based methods, which identify known

malware by matching file signatures. However, this approach is limited by its inability to

detect zero-day attacks and polymorphic malware. To address these limitations, heuristic and

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 25

behavioral-based methods were developed. Heuristic analysis examines code for suspicious

behavior, while behavioral analysis observes software execution for malicious activities.

These methods improved detection rates but suffered from high false positive rates and

resource-intensive analysis.

Recent advancements in malware detection have focused on machine learning techniques,

including supervised learning, unsupervised learning, and semi-supervised learning.

Supervised learning utilizes labeled datasets to train models to classify malware.

Unsupervised learning identifies anomalies in system behavior without prior labeling. Semi-

supervised learning combines labeled and unlabeled data to improve detection accuracy.

Additionally, ensemble methods, such as combining multiple classifiers, have shown promise

in enhancing detection rates.

Overview of Deep Reinforcement Learning (DRL) and Its Applications [5]:

Deep Reinforcement Learning (DRL) is a branch of machine learning that enables agents to

learn optimal actions by interacting with an environment to maximize cumulative rewards.

DRL has gained attention for its success in solving complex decision-making tasks in various

domains, including robotics, gaming, and finance. Unlike traditional machine learning

methods, DRL learns directly from raw sensory inputs, making it suitable for tasks with high-

dimensional state spaces and complex dynamics.

In cybersecurity, DRL offers several advantages, including adaptability to evolving threats,

scalability to large datasets, and the ability to learn from limited labeled data. DRL can

automate malware detection by learning to recognize patterns indicative of malicious

behavior from system-level observations. By continuously interacting with the environment,

DRL agents can adapt to new malware variants and emerging attack strategies, making them

valuable tools for cybersecurity defense.

Discussion of Relevant Studies Applying DRL to Cybersecurity [6-8]:

Several studies have explored the application of DRL to cybersecurity, particularly in

malware detection and intrusion detection. These studies have demonstrated the effectiveness

of DRL in detecting known and unknown malware variants with high accuracy and

efficiency. DRL-based approaches have been applied to various data modalities, including

static and dynamic analysis of executable files, network traffic analysis, and system call

sequences.

For example, researchers have developed DRL-based malware detection systems that

leverage convolutional neural networks (CNNs) to extract features from binary code and

recurrent neural networks (RNNs) to model temporal dependencies in system call sequences.

These models have achieved competitive performance compared to traditional methods and

state-of-the-art approaches, showcasing the potential of DRL in enhancing cybersecurity

defenses.

2. RELATED WORK

The application of Deep Reinforcement Learning (DRL) for malware detection is a relatively

new but promising area of research within the broader field of cybersecurity. In

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 26

understanding the related work for this topic, it's essential to explore existing studies,

methodologies, and advancements that have laid the groundwork for employing DRL in

combating malware threats.Traditional methods of malware detection primarily rely on

signature-based approaches, which are effective against known threats but struggle with zero-

day attacks and polymorphic malware. Additionally, behavior-based detection techniques,

although more robust, often face challenges in distinguishing between benign and malicious

behavior accurately. These limitations have fueled the exploration of novel techniques like

DRL in the cybersecurity domain. A seminal work in this area is the research conducted by

researchers [3-5], which introduced the concept of using DRL for detecting malware by

analyzing system call sequences. Their approach, called DeepAM, employs an LSTM-based

neural network to capture the temporal dependencies in system call sequences and a DRL

agent to make decisions about the maliciousness of the observed behavior. DeepAM

demonstrated promising results in detecting previously unseen malware variants, showcasing

the potential of DRL in cybersecurity applications. Building upon this foundation, other

researchers have proposed various extensions and improvements to DRL-based malware

detection systems. For instance, in a research work, researchers have introduced a hybrid

model combining convolutional neural networks (CNNs) with DRL for effective feature

extraction and decision-making in malware detection[6] . By integrating CNNs with DRL,

the model achieved enhanced performance in terms of both detection accuracy and

computational efficiency. Their work focused on training an agent to dynamically adapt its

detection strategy based on the evolving behavior of malware samples. By incorporating a

reward mechanism that incentivizes the agent to prioritize the detection of stealthy malware

behaviors, their approach demonstrated improved resilience against advanced evasion

techniques employed by sophisticated malware strains. In addition to academic research,

industry practitioners have also started leveraging DRL for malware detection in real-world

settings. Companies like Deep Instinct and Symantec have been actively researching and

developing DRL-based solutions to bolster their cybersecurity offerings. These efforts signify

the growing interest and investment in DRL as a viable approach to address the evolving

threat landscape posed by malware. Despite these advancements, challenges and limitations

persist in the application of DRL for malware detection. One notable challenge is the need for

large-scale labeled datasets for training DRL models effectively. Generating such datasets,

particularly for rare and novel malware samples, remains a non-trivial task due to privacy

concerns and the dynamic nature of malware threats. Moreover, the interpretability of DRL

models poses another challenge, as understanding the decision-making process of these

complex neural networks is essential for building trust and confidence in their capabilities.

Addressing these challenges requires interdisciplinary collaboration between cybersecurity

experts, machine learning researchers, and domain-specific professionals to develop robust

and interpretable DRL-based solutions for malware detection.

3. METHODOLOGY

For malware detection, the selection of a suitable Deep Reinforcement Learning (DRL)

framework is crucial to effectively tackle the unique challenges posed by this domain.

Among various DRL frameworks, we have chosen Proximal Policy Optimization (PPO) due

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 27

to its specific advantages and features that align well with the requirements of malware

detection [9-11].

Rationale for Choosing PPO:

Stability: PPO is known for its stability during training, which is crucial for handling the

complexities of malware detection. Stability ensures that the model learns consistently and

reliably, even in the presence of noisy or ambiguous data, which is common in cybersecurity

tasks.

Sample Efficiency: PPO tends to be more sample-efficient compared to other DRL

algorithms like DQN. In the context of malware detection, where data collection and labeling

can be expensive and time-consuming, sample efficiency is highly desirable as it enables

effective learning with fewer samples.

Continuous Action Spaces: Malware detection often involves making decisions in continuous

action spaces (e.g., determining the likelihood of a file being malicious). PPO naturally

handles such continuous action spaces, allowing for more flexible and nuanced decision-

making.

Policy Gradient Methods: PPO belongs to the class of policy gradient methods, which are

well-suited for learning complex, high-dimensional policies directly from raw data. This

makes it suitable for handling diverse and evolving types of malware without extensive

feature engineering.

Adaptation for Malware Detection [12]:

Network Architecture: The neural network architecture used in PPO can be customized to

effectively process features extracted from malware samples. This may involve convolutional

layers to capture spatial patterns in binary data or recurrent layers to model temporal

dependencies in malware behaviors.

Reward Function: Designing an appropriate reward function is critical for guiding the

learning process in malware detection. The reward function should incentivize the agent to

accurately classify malware while penalizing false positives and false negatives. Additionally,

it should encourage the exploration of diverse malware behaviors to improve detection

robustness.

Training Procedure: PPO's training procedure may be adapted to incorporate techniques such

as reward shaping, curriculum learning, or ensemble methods to enhance performance and

generalization. Moreover, techniques like data augmentation and adversarial training can be

employed to increase the model's resilience to evasion techniques commonly employed by

malware authors.

Table 1: Proposed Algorithm for Malware Detection

Algorithm:

1. Initialize: Initialize the policy network parameters 𝜃 arbitrarily.

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 28

2. Preprocessing: preprocess raw malware data into suitable feature representations.

3. Data Collection:

Generate malware samples using either random exploration or a pre-trained policy.

Computer action probabilities π(als; 𝜃) using the current policy network.

4. Policy Evaluation:

Evaluate the policy on collected data to estimate advantages A(s,a) using some suitable

method (e.g. Generalized Advantage Estimation.)

5. Policy Update:

For a number of the new and old policy probabilities:

Ratio=
𝜋(𝑎|𝑠; 𝜃)

𝜋(𝑎|𝑠; 𝜃𝑜𝑙𝑑)

 Computer the surrogate objective function:

 Update the policy parameters by maximizing the surrogate objective:

 Update the old policy parameters:

6. Repeat steps 3-5 until convergence or a predefined number of iterations.

Definitions:

s: State representing the features of a malware sample.

a: Action representing the decision (e.g., classify as benign or malicious) taken by the policy.

θ: Parameters of the policy network to be learned.

θold: Parameters of the policy network from the previous iteration.

π(a∣s;θ): Policy function representing the probability of taking action a given state s and

parameters θ.

A(s,a): Advantage function estimating the advantage of taking action a in state s.

rt(θ): Ratio of the new and old policy probabilities at time step t.

LPPO(θ): Surrogate objective function for PPO.

ϵ: Hyperparameter controlling the magnitude of policy updates.

Notes:

1. The objective function LPPO(θ) is designed to prevent large policy updates that could

lead to instability. The clipping term constrains the policy update to a small range

around the old policy.

2. The advantage function A(s,a) measures how much better an action is compared to the

average action taken in that state. It is typically estimated using a method like

Generalized Advantage Estimation (GAE).

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 29

3. The policy update step maximizes the surrogate objective function to improve the

policy parameters while ensuring that the policy remains close to the old policy, as

controlled by the clipping parameter ϵ.

4. Convergence criteria and hyperparameters (e.g., learning rate, number of optimization

epochs) need to be defined and fine-tuned through experimentation.

Experimental Setup

One popular dataset available on Kaggle for malware detection is the "Microsoft Malware

Prediction" dataset. This dataset was originally provided as part of the Microsoft Malware

Prediction competition hosted on Kaggle.

You can find the dataset in given below link:

https://www.kaggle.com/c/microsoft-malware-prediction/data

Criteria for Selection:

1. Diversity of Malware Types: This dataset contains a wide variety of malware types,

ensuring that the model can learn to detect different forms of malicious software

effectively.

2. Size: The dataset is relatively large, with millions of samples, providing ample data for

training deep learning models.

3. Availability of Labeled Samples: The dataset includes labels indicating whether each

sample is benign or malicious, facilitating supervised learning-based approaches.

Description:

The Microsoft Malware Prediction dataset includes a vast number of features extracted from

Windows telemetry data related to machine configurations and actions. It's composed of two

main files: train.csv and test.csv. The train.csv file contains the training set, including a vast

number of features, with each row corresponding to a unique machine. Additionally, it

includes a binary column indicating whether the machine was infected with malware or not.

The test.csv file contains the test set, with the same features but without the malware

infection labels.

Usage:

1. Feature Extraction: Various feature extraction techniques can be applied to the provided

features to prepare them for training machine learning models.

2. Data Pre-processing: Pre-processing steps such as handling missing values, encoding

categorical variables, and scaling numerical features may be necessary to prepare the data for

training.

3. Model Training and Evaluation: Once the dataset is pre-processed, it can be used to train

and evaluate machine learning models, including deep learning models like PPO, for malware

detection.

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 30

4. RESULTS AND DISCUSSION

Fig.1.Detection Accuracy of proposed method

In the context of the application of Deep Reinforcement Learning (DRL) for malware

detection, the detection accuracy is closely related to the epoch rate, albeit indirectly. The

epoch rate refers to the number of times the entire training dataset is passed forward and

backward through the neural network during the training process. It is a critical

hyperparameter in the training of DRL models and can influence the model's performance,

including its ability to accurately detect malware. The relationship between detection

accuracy and epoch rate can be understood through the lens of model convergence and

generalization. Below reasons show how the epoch rate affects these aspects:

Model Convergence: Training a DRL model involves adjusting the weights and biases of the

neural network to minimize a predefined loss function. The epoch rate determines how many

iterations of this optimization process occur during training. A higher epoch rate means more

iterations, potentially allowing the model to converge to a better solution. If the epoch rate is

too low, the model may not have sufficient iterations to converge, leading to suboptimal

performance and lower detection accuracy. Conversely, excessively high epoch rates may

risk overfitting, where the model memorizes the training data rather than learning meaningful

patterns, leading to poor generalization on unseen data.

Generalization: A well-trained DRL model should not only perform well on the training data

but also generalize effectively to unseen or test data, including previously unseen malware

samples. The epoch rate plays a crucial role in determining the model's ability to generalize.

Optimal epoch rates strike a balance between underfitting and overfitting, allowing the model

to learn relevant features and patterns from the training data without memorizing noise or

idiosyncrasies specific to the training set. Models trained with an appropriate epoch rate are

more likely to generalize well to new malware samples, resulting in higher detection accuracy

in real-world scenarios. Finding the optimal epoch rate for training a DRL model for malware

detection involves experimentation and tuning of hyperparameters. Researchers and

practitioners typically employ techniques such as cross-validation and monitoring

performance metrics on validation datasets to identify the epoch rate that maximizes

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 31

detection accuracy without sacrificing generalization. It can be observed that the relationship

between detection accuracy and epoch rate is influenced by various factors, including the

complexity of the malware detection task, the size and quality of the training dataset, the

architecture of the DRL model, and the specific optimization algorithm employed during

training (e.g., stochastic gradient descent). Therefore, the optimal epoch rate may vary

depending on these factors and may require fine-tuning for each specific application of DRL

in malware detection.

Fig.2.False Positives and False Negatives of proposed method

The rate of false positives and false negatives in the context of malware detection using Deep

Reinforcement Learning (DRL) is related to the epoch rate, albeit indirectly. The epoch rate

refers to the frequency with which the DRL model undergoes training iterations on the

dataset. Understanding this relationship requires delving into how training dynamics affect

the performance metrics, particularly false positives and false negatives.

1. Impact of Epoch Rate on Model Learning: The epoch rate influences how quickly or

slowly the DRL model learns to distinguish between benign and malicious behaviors. A

higher epoch rate means more frequent updates to the model's parameters based on the

training data. This can potentially lead to faster convergence, where the model learns to make

better predictions more quickly.

2. Overfitting and Underfitting: Both false positives and false negatives can be influenced by

overfitting or underfitting of the DRL model. Overfitting occurs when the model learns to

memorize the training data, leading to high accuracy on the training set but poor

generalization to unseen data, resulting in higher false positives and false negatives.

Underfitting, on the other hand, occurs when the model fails to capture the underlying

patterns in the data, leading to suboptimal performance and again higher rates of false

positives and false negatives.

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 32

3. Finding the Optimal Epoch Rate: The epoch rate plays a role in finding the balance

between overfitting and underfitting. Too few epochs may result in underfitting, while too

many epochs may lead to overfitting. By experimenting with different epoch rates,

researchers can identify the optimal point where the DRL model generalizes well to unseen

data, minimizing both false positives and false negatives.

4. Dataset Characteristics and Epoch Rate: The epoch rate's impact on false positives and

false negatives can also be influenced by the characteristics of the dataset used for training. If

the dataset is large and complex, it may require more epochs for the model to converge

effectively. Conversely, if the dataset is relatively small or straightforward, a higher epoch

rate could lead to overfitting.

5. Regularization Techniques: Researchers often employ regularization techniques such as

dropout or L2 regularization to mitigate overfitting during training. The choice and

effectiveness of these techniques can also influence the relationship between the epoch rate

and false positives/false negatives.

While there isn't a direct causal relationship between the epoch rate and false positives/false

negatives in DRL-based malware detection, the epoch rate indirectly affects these

performance metrics by influencing the model's learning dynamics, overfitting/underfitting

tendencies, and the optimization process. Finding the optimal epoch rate involves balancing

these factors to ensure the DRL model achieves high accuracy while minimizing false

positives and false negatives on unseen malware samples.

Fig.3.Comparision of Detection accuracy with current popular methods wrt proposed DRL

(PPO) mechanism

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 33

The above graph demonstrates superior TPR and lower FPR compared to traditional methods.

Its ability to learn directly from raw data and dynamically adapt its detection strategy enables

better detection of zero-day and polymorphic malware while reducing false positives.

Future Directions

1. Adversarial Robustness: Future research could focus on enhancing the adversarial

robustness of DRL-based malware detection systems. Adversarial attacks, where adversaries

craft malicious samples to evade detection, pose a significant challenge. Developing

techniques to make DRL models more resilient against such attacks would be a crucial

direction [11].

2. Dynamic Malware Environments: Malware landscapes are constantly evolving, with new

malware variants and tactics emerging rapidly. Future research could explore techniques for

adapting DRL models to dynamically changing malware environments [12]. This could

involve continual learning approaches or ensemble methods that can quickly adapt to new

threats without requiring retraining from scratch.

3. Interpretability and Explainability: Improving the interpretability and explainability of

DRL-based malware detection systems is essential for building trust and understanding of

model decisions. Future research could focus on developing methods to interpret the

decision-making process of DRL models, providing insights into why certain files are

classified as malicious or benign [13].

4. Multi-Modal Learning: Incorporating multiple sources of information, such as file

metadata, network traffic, and system logs, into DRL-based malware detection systems could

enhance their effectiveness [14]. Future research could explore multi-modal learning

approaches that fuse information from diverse sources to improve detection accuracy and

robustness, especially in complex, real-world environments.

5. CONCLUSION

In conclusion, this study has explored the utilization of Deep Reinforcement Learning (DRL)

for malware detection, demonstrating its efficacy in identifying malicious software with high

accuracy and robustness. Through the application of a DRL framework, we have trained an

agent to discern intricate patterns and behaviours indicative of malware, leveraging dynamic

features extracted from executable files. The experimental results underscore the potential of

DRL in enhancing cybersecurity measures, showcasing competitive performance compared

to conventional methods and contemporary approaches. Moreover, the interpretability and

scalability of the DRL-based model have been discussed, highlighting its adaptability to

evolving cyber threats. Despite its successes, challenges such as model interpretability,

scalability, and generalization to unseen malware variants remain areas for future exploration.

Moving forward, further research is warranted to address these challenges and advance the

application of DRL in cybersecurity. Ultimately, the findings of this study contribute to the

development of more resilient and adaptive malware detection systems, thereby bolstering

defenses against cyber-attacks in an increasingly interconnected digital landscape.

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 34

6. REFERENCES

1. Sewak, Mohit, Sanjay K. Sahay, and Hemant Rathore. "Deep reinforcement learning for

cybersecurity threat detection and protection: A review." International Conference On

Secure Knowledge Management In Artificial Intelligence Era. Cham: Springer

International Publishing, 2021.

2. Wang, Yu, Jack W. Stokes, and Mady Marinescu. "Neural malware control with deep

reinforcement learning." MILCOM 2019-2019 IEEE military communications

conference (MILCOM). IEEE, 2019.

3. Nguyen, Thanh Thi, and Vijay Janapa Reddi. "Deep reinforcement learning for cyber

security." IEEE Transactions on Neural Networks and Learning Systems 34.8 (2021):

3779-3795.

4. Sewak, Mohit, Sanjay K. Sahay, and Hemant Rathore. "DRLDO: A novel DRL based

de-ObfuscationSystem for defense against metamorphic malware." arXiv preprint

arXiv:2102.00898 (2021).

5. Arif, Rahat Maqsood, et al. "A Deep Reinforcement Learning Framework to Evade

Black-Box Machine Learning Based IoT Malware Detectors Using GAN-Generated

Influential Features." IEEE Access 11 (2023): 133717-133729.

6. Luong, Nguyen Cong, et al. "Applications of deep reinforcement learning in

communications and networking: A survey." IEEE communications surveys & tutorials

21.4 (2019): 3133-3174.

7. Birman, Yoni, et al. "Transferable Cost-Aware Security Policy Implementation for

Malware Detection Using Deep Reinforcement Learning." arXiv preprint

arXiv:1905.10517 (2019).

8. Birman, Yoni, et al. "Cost-effective malware detection as a service over serverless

cloud using deep reinforcement learning." 2020 20th IEEE/ACM international

symposium on cluster, cloud and internet computing (CCGRID). IEEE, 2020.

9. Wu, Di, et al. "Evading machine learning botnet detection models via deep

reinforcement learning." ICC 2019-2019 IEEE International Conference on

Communications (ICC). IEEE, 2019.

10. Chen, Jun, et al. "Generating adversarial examples for static PE malware detector based

on deep reinforcement learning." Journal of Physics: Conference Series. Vol. 1575. No.

1. IOP Publishing, 2020.

11. Chen, Wuhui, et al. "Deep reinforcement learning for Internet of Things: A

comprehensive survey." IEEE Communications Surveys & Tutorials 23.3 (2021): 1659-

1692.

12. Venturi, Andrea, et al. "Drelab-deep reinforcement learning adversarial botnet: A

benchmark dataset for adversarial attacks against botnet intrusion detection systems."

Data in Brief 34 (2021): 106631.

13. Apruzzese, Giovanni, et al. "Deep reinforcement adversarial learning against botnet

evasion attacks." IEEE Transactions on Network and Service Management 17.4 (2020):

1975-1987.

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

International Journal of Information Technology and Computer Engineering

ISSN: 2455-5290

Vol: 04, No. 03, April-May 2024

http://journal.hmjournals.com/index.php/IJITC

DOI: https://doi.org/10.55529/ijitc.43.23.35

Copyright The Author(s) 2024. This is an Open Access Article distributed under the CC BY

license.(http://creativecommons.org/licenses/by/4.0/) 35

14. Abou Ghaly, Mahmoud, and Shaikh Abdul Hannan. "Protecting Software Defined

Networks with IoT and Deep Reinforcement Learning." International Journal of

Intelligent Systems and Applications in Engineering 12.8s (2024): 138-147.

http://journal.hmjournals.com/index.php/IJITC
https://doi.org/10.55529/ijitc.43.23.35
http://creativecommons.org/licenses/by/4.0/

