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Abstract: Machine learning is one of the fast-growing areas of computer science, with far-reaching
applications. There are several applications for machine learning. The most significant of which
is supervised learning. Supervised learning is common in classification problems. In this study,
frequently used twelve machine learning algorithms are considered: NB, LDA, LR, ANN, SVM,
K-NN, HT, DT, C4.5, CART, RF and BB. We apply these algorithms on seven datasets. The main
goal of this study was to evaluate the performance of the machine learning algorithms on both
binary and multiple classification problems using a variety of performance metrics: accuracy,
kappa statistic, precision, recall, specificity, F-measure, MAE, RMSE and MCC. Here, we found
that RF algorithm proved to have the best performance in three out of seven datasets. But the other
four algorithms: NN, NB, BB and LR also performed well.
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1. INTRODUCTION

Machine learning [2,3] can be used in a variety of ways for algorithm selection. A few papers compare
different machine learning algorithms in detail. J48, CART, and ADTree are compared by [10].
CART was found to be the most accurate algorithm, with a 98.5 percent accuracy rating. GRU-SVM,
LR, MLP, NN, SR, and SVM for breast cancer dataset were used to discover Agarap [1]. MLP was
determined to have the highest classification accuracy of 99.04 percent. J48, Nave Bayes, LMT, REP
Tree, DT, K-star, LR, ICO, IBK, and FC are used to analyze several machine learning methods for
the breast cancer dataset in [4,10,11,12, 13, 14]. Clean classifiers are good with a classification
accuracy of 76 percent. For a breast cancer dataset, [14] examine LR, NB, and SVM. They discovered
that SVM is the most effective. Sadhana et al. [16] compared DT and SVM on a breast cancer dataset
and discovered that the SVM had the highest accuracy of 96.99 percent. Doulah [17] compare three
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algorithms SVM, K-NN, DT and found that SVM grants the largest accuracy of (98.1%). Dana et al.
[15] examine five algorithms SVM; ANN; DT; NB; and K-NN. They located that SVM reap the best
accuracy is ninety%. Helwan et al. [3] discover the use of lower BPNN and RBFN for breast tissue
dataset and locate RBFN outperforms the BPNN in phrases of accuracy. Ravi [18] assessed NB, IBK
and J48 to procedure classify the Breast Tissue dataset. They discovered that the J48 set of rules
proficiency is higher than other algorithms. Subramani et al. [20] compare 3 classification algorithms
are SVM, KNN and DT and discovered that SVM performs. Kleyko et al. [21] examined algorithms
NN, LR, SVM and determined that LR is the pleasant choice with 93.4%. Thomas [19] compares
BB, DT, C4.5 and found that BB is outperform. Ansari et al. [22] examined NN, BB, NB and found
that NB, the highest accuracy is 93.87%. [24] compares NB, NN, SMO, IBK, J48 and RIPPER, BB
set of rules on various datasets. [23] compare BPNN, RST-GA, RST-JA and discovered that BPNN
performs higher than the opposite algorithms. [21] evaluate the Quest, univariate splits, C4.5, Ind-
Cart, and LR and discovered that C4.5 provides quality results.

2. METHODS AND MATERIAL

Naive Bayes (NB)
Naive Bayes classifier [25] considers that the effect of the value of a predictor (x) on a given class (c)
is independent of the values of other predictors is given by-

P(clx) =
1)
Where, P(x|c) = P(x;|c) X P(x,|c) X ++-+-- X P(x,|c) x P(c)
Where, Equation (1) is the posterior probability; P(c), is the prior probability of class; P(x|c), is the
likelihood.

P(x|c)P(c)
P(x)

Logistic Regression (LR)
Let’s assume a target variable Y and X = x; + x,+..... +x; where j is the number of independent
variables, then the conditional mean of Y is given x is given by:

Y
n(x) = E(3)
)
(2) is the expected value of the target variable for a given X. The LR [26] is given by the formula:
ed()
() = fee®
@)
Where, g(x) = In 1’_:&’2{) = Bo + By Feren . +Bis
Equation (3) is called the logit transformation, whereg,, B4, ..... , Bi. are estimated using maximum
likelihood. The log likelihood is given by: L()+[z(ﬁ)] =y yiinfn(x)] + (A —y) {y; In[1 —
x)=In|l(=

m(x)]}
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Linear Discriminant Analysis (LDA)
LDA was developed in 1936 by R.A. Fisher [27]. We assume the density functionP (X = x|Y = k)
of X for an observation that comes from the kth class is known, then by Bayes Theorem we have.

r=ky__Pr=pre=o
*(r=2)- P (=5 PO =)

In general, f,(X) =P(X =x|Y =k) is the densities. For example, if we assume X =
(X1, X3, ..., Xp) is drawn from a multivariate Gaussian distributionN (u,, ), then

1 1 "
fe(x) = ———exp {_E(x —u) Y (- .Uk)}
o emelze |
The LDA classifier assigns an observation X = x to the class for which
1
8e(x) = x"Y "y — 5#%2‘% + Inmy
Is the largest. From here we can see that the decision boundary for LDA is linear.

Support Vector Machine (SVM)
SVM [28, 29] have been added by using Vapnik and collaborators in 1992. According to [30], the
selection floor by using SVM for linearly separated space is a hyper-plane and is given below:
wex+b=0
Where X is an arbitrary feature vector,bandware learned from training set linearly separable data. The
dot product w e xis defined by,
= z W;X;

This linear classifier is represented by the hyper- plane H(w ex + b = 0) and defines a region for
class +1 patterns(w ¢ x + b > 0) and another region for class -1 pattern (w e« x + b < 0).

Classification and Regression Tree (Cart)

CART algorithm changed into advanced through Brieman, Friedman, Olshen, and Stone in 1984 [32].
For a binary magnificence the GINI degree of impurity is given by, GINI(t) = 1 — Z[p(?)]2
Wherep(?) is the relative frequency of class j at node t. When a node p is split into x partitions, the
quality of split is given by

n nl
GINIgy e = Z —GINI

Wheren;=number of records at childi
n = number of records at node p
C4.5
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The first step in C4.5 set of rules [33] is to specify root of the tree. To determine the order of functions
inside the choice tree, records benefit components is evaluated for each attribute as described in
n

Entropy(S) = Z —p;
i=1
Where i is a state, p; is the possibility of outcome being in state i for the set S and n is the number of
possible.

K-Nearest Neighbor (K-NN)
KNN [34] is distance-primarily based classifier wherein distance is used to classify information based
on labels of its associates which can be decided on from training data.

Euclidian Distance:\/ 'f=1(xi—yi)2

If k = 1, the class where its nearest neighbor belongs. Alternatively, if we provide a huge ok input, it
can bring about underneath-fitting.

Random Forest (RF)
Random Forests [34] similarly weighted is offered as inside the following system:

H(x) = arg {max%Z{’;l(I(x; 0) = y]-)}
max
mg(X,Y) = av l ((X)=Y) = .y (1, (X) = )
The generalization error is given by,
The strength of the set of classifiers{I(x, @)}is
max )

s =Exy (P@(I(x,O) =Y) Tj#Y,((x,0) :]')(2)
An upper bound for the generalization error is given by
PE* < 5(1_52)
===
Bagging and Boosting (BB)

Let D = {(xq,¥1), (x2,¥2),..... , (m, Vi) Y€ a set of mitems and lety; € Y = {cy, ¢y, ..... , CrJbe a
set of k class labels; C denotes classification algorithm and n is number of learners.

1. Draw m items randomly with replacement from the dataset D, so generate bootstrap samples,

2. Each dataset Di is trained and multiple classification models are constructed, Mi = C (D).

3. Consensus of classification models is tested to calculate out-of-bag error.

4. New sample x is given to classifiers as input and the outputs y; are obtained from each model
yi =Mi(x)

5. The outputs of models {M1, M,....,M; } are combined as in

argmax

M) = Y €Y Ximm=y1
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Hoeffding Tree (HT)
The Hoeffding Bound [31,35,36] is calculated the usage of the following equation: Hoeffding bound,

o /RZ In(3)
2nl

As mentioned before, the Hoeffding Tree algorithm incrementally generates a decision tree from Data
Streams.

Decision Table (DT)

Decision table is an accurate technique for making numerical predictions from decision trees. It is an
ordered set of If-Then rules, which may be denser than decision trees and therefore easier to
understand [37].

Evaluation Criteria

Table 1 shows a confusion matrix illustrating what might happen for positive and negative outcomes
in a data mining model.

Table 1. Confusion Matrix

Predicted
TP FN
FP TN

Actual

The performance criterions are shown in the following Table 2:

Table 2. Performance Criterions

Performance Statistics
Criterions
TP+TN
Accuracy T ——————
TP+TN+FP+FN
i =PoPe — 1 _17Po \phere, p, = — TN anq
1-pe 1-pe TP+TN+FP+FN
’ b _ TP + FN TP + FP
Cohen’s kappa =GPy TN+ FP+ FN TP+ TN + FP + EN)
FP+TN FN +TN

+ .
(TP+TN+FP+FN TP+TN+ FP + FN

. p=—""_= nfl” — %L \Where PTotal; is the Predicted total for
Precision TP+FP  Y¥Elcy;  PTotal;

the class and Cii is the Predicted class for a multi class problem.

R/S = —— = nfii = —%ii_ \Where ATotali is the total for the actual
FN+TP Zi:l Cij ATotal;

total and C;j; is the Predicted class for a multi class problem, and n is the

Recall or Sensitivity

sample size.
. TN T — ATotal; — PTotal; + C;
Specificity S = =
TN + FP T — ATotal;
2 * Recall * Precision
F-Measure F =

Recall + Precision
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Matthews’s TP X TN — FP X FN
Correlation C=
Coefficient J@TP+FP) (TP +FN) (TN + FP) (TN + FN)

n
Mean Absolute 1 N
Error MAE = nz:lyj vl
j=1
n
Root Mean Square 1 N2
Error RMSE = ;z(yj -9)
j=1

Software Used

The open-source programming language R is used to analyze statistical data, present graphics, and
generate reports [38]. The experiments were conducted using open-source R software, version 3.5.2
(https://www.r-project.org).

Dataset Description
The summary of the datasets used in comparative studies in the following Table 3.

Table 3. Dataset Characteristics

No. of
Dataset Attributes No. of No of Missing
(Including Instances Classes Values
SI. No
Class)
1 Breast Cange_r Wisconsin 11 699 5 Yes
(Original)
Statlog
2 (Vehicle Silhouettes) 19 846 4 No
3 Vertebral Column 7 310 3 No
4 Breast Tissue 10 106 6 No
5 Contraceptl\_/e method 10 1473 3 No
Choice
6 Image segmentation 20 2310 7 No
7 Acrtificial Characters 8 10218 10 No

The datasets chosen for the article have been downloaded from UCI repository,
https://archive.ics.uci.edu/ml/datasets/ and https://www.openml.org/search?type=data.

Missing Value Estimation
There are numerous methods available for estimating missing values [40], to estimate missing values
for our analysis, however, we use mode method.
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Hold Out Approach

The hold out approach is a straightforward method for generating test data. This method divides the
data set into two subsets, a training set and a test set, at random. In this study, the training set will
contain 80% of the data, while the test set will contain the remaining 20%. We use the training data
set to train the model and use the test data set to test the model based on the training model.

3. RESULTS AND DISCUSSIONS

A simple and sensible way to start is by looking at the data frame, using pairs to plot every variable
against every other. There appears to be excellent data separation, and reasonable separation, but
nothing obvious for the other variables. The commonest plots for a sample are histograms and box
plots. Histograms are excellent for showing the mode, the spread, and the symmetry (skew) of a set
of data [8] whereas boxplots are outstanding for showing the spread [9], outliers [6,7] and normality
of a set of data [5]. From Figure 1, we found that the Wisconsin breast cancer dataset contains two
classes. From Figure 2, we visualize that the breast tissue dataset contains six classes. From Figure
3, we envisage that the vehicle dataset contains four classes. From Figure 4, we found that the
vertebral column dataset contains three classes. From Figure 5, we visualize that the contraceptive
method choice dataset contains three classes. From Figure 6, we visualize that the image segmentation
dataset contains seven classes. From Figure 7, we envisage that the artificial characters dataset contain
ten classes and we also see the correlation coefficient between the attribute
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Figure 1. Scatterplot Matrix by Groups for Breast Cancer Dataset
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Table 4. Performance Measures of Breast Cancer Dataset

CA CClI ICI | Kapp | MA | RMS | Precisi | Reca | Specifici F- MC
(Accura a E E on I ty measu | C
cy) re

NB 96.43% | 3.57 | 91.77 | 0.03 | 0.187 | 0.966 |0.964 | 0.971 0.965 | 0.91

% % 5 9

LDA 95% 5% | 88.02 | 0.04 | 0.196 | 0.950 |0.950 | 0.913 0.949 | 0.88

% 7 1

LR 97.14% | 2.85 | 93.37 | 0.04 | 0.163 | 0.972 |0.971| 0.974 0.972 | 0.97
% % 1 1

NN 96.42% | 3.57 | 91.77 | 0.03 | 0.155 | 0.966 |0.964 | 0.971 0.965 | 0.91
% % 9 9

SVM | 97.14% | 2.85 | 93.37 | 0.06 | 0.169 | 0.972 |0.971| 0.974 0.972 | 0.93
% % 3 4

KNN 95% 5% | 88.33 | 0.04 | 0.211 | 0.950 |0.950 | 0.939 0.950 | 0.88
% 7 3

BG 95.71% | 4.29 | 89.93 | 0.07 | 0.178 | 0.957 | 0.957 | 0.942 0.957 | 0.89
% % 2 9

DT 95% 5% | 88.33 | 0.07 | 0.193 | 0.950 |0.950 | 0.939 0.950 | 0.88
% 8 3

C45 | 9357% | 6.43 | 84.99 | 0.07 | 0.243 | 0.936 |0.936 | 0.920 0.936 | 0.85
% % 9 0

RF 97.85% | 2.14 | 95.03 | 0.03 | 0.150 | 0.980 |0.979 | 0.991 0.979 | 0.95
% % 2 2

CART | 93.57% | 6.43 | 84.99 | 0.10 | 0.239 | 0.936 |0.936 | 0.920 0.936 | 0.85
% % 1 0

HT 96.43% | 3.57 | 91.77 | 0.03 | 0.188 | 0.966 |0.964 | 0.971 0.965 | 0.91
% % 6 9
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Figure 2. Scatterplot Matrix by Groups for Breast Tissue Dataset

Table 5. Performance Measures of Breast Tissue Dataset

ccl — T F
CA | (Accurac | ICI Kapp | MA | RMS | Precisi | Reca | Specifici meas MC
a E E on ! ty C
y) re

NB | 5455% | 0% | asw | %% 0315 | 0633 | Ot | 0926 | 0579 | 070
2091 | 51.11 | 0.15 0.59 057

0
LDA | 59.00% | Y| SLA 1905 o300 | 0735 | O | 0948 | 0629 | O
31.81 | 61.79 | 0.11 0.68 0.65

0
LR | e8as | >0t | 907 190t o204 | 0759 | %% | 0958 | 0692 | O
36.36 | 57.18 | 0.13 0.63 0.62

0
NN | 636396 | S50 | 121 003 Loarg | 0740 | O2° | 0071 | oesa | O
svM | s0% | 50% | 297 | 92% 10342 | oss0 | 02| o976 | oser | O
22.73 | 72.29 | 0.08 0.7 0.80

0
KNN | 77.27% | 2575 | 76291 098 10267 | 0900 | °77 | 0978 | 0824 | O
BG | 6363% | 000 | 56% | ot 0289 | 0682 | Vo0 | 0925 | 0657 | O3
4091 | 49.87 | 0.18 0.59 054

[0)
DT | 59.00% | 0| 0371908 10289 | 0645 | 7| 093a | 0604 | O
27.27 | 66.67 | 0.00 0.72 0.71

0
cas | 72730 | 22T | 00071009 10289 | 0806 | “J% | 0960 | 0756 |
36.36 | 56.86 | 0.13 0.63 0.60

0
RF | 636496 | 2020 | 5080 | 905 1 o26g | 0703 | V7 | 0964 | 0646 | O
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Figure 3. Scatterplot Matrix by Groups for Vehicle Dataset
Table 6. Performance Measures of Vehicle Dataset
CA CClI ICI Kappa | MAE | RMSE | Precision | Recall | Specificity mean-ure MCC
NB | 44.70% | 55.25% | 27.41% | 0.276 | 0.451 0.520 0.447 0.828 0.401 | 0.290
LDA | 77.05% | 22.94% | 69.39% | 0.137 | 0.287 0.758 0.771 0.923 0.758 | 0.686
LR |81.17% | 18.82% | 74.87% | 0.116 | 0.272 0.804 0.812 0.934 0.805 | 0.744
NN | 78.82% | 21.17% | 71.73% | 0.124 | 0.302 0.778 0.788 0.928 0.782 | 0.711
SVM | 72.35% | 27.64% | 63.18% | 0.282 | 0.359 0705 0.724 0.907 0.709 | 0.621
KNN | 68.23% | 31.76% | 57.61% | 0.160 | 0.397 0.665 0.682 0.891 0.672 | 0.565
BG | 71.17% | 28.83% | 61.56% | 0.167 | 0.288 0.687 0.712 0.902 0.695 | 0.602
DT |63.52% | 36.47% | 51.57% | 0.245 | 0.343 0.610 0.635 0.880 0.609 | 0.501
C45 |68.82% | 31.18% | 58.44% | 0.162 | 0.363 0.692 0.688 0.895 0.688 | 0.583
RF | 71.76% | 28.23% | 62.4% | 0.158 | 0.282 0.705 0.718 0.905 0.705 | 0.615
CART | 74.71% | 25.29% | 66.28% | 0.157 | 0.303 0.733 0.747 0.914 0.738 | 0.654
HT | 45.29% | 54.70% | 28.16% | 0.274 | 0.448 0.530 0.453 0.830 0.411 | 0.300
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Figure 4. Scatterplot Matrix by Groups for Vertebral Column Dataset

Table 7. Performance Measures of Vertebral Column Dataset

CA CCl ICI Kappa | MAE | RMSE | Precision | Recall | Specificity mean-ure MCC
NB | 83.87% | 16.13% | 73.24% | 0.123 | 0.262 0.834 | 0.839 0.934 0.835 | 0.767
LDA | 80.64% | 19.35% | 68.82% | 0.195 | 0.304 0.830 0.806 0.913 0.813 | 0.715
LR | 88.71% | 11.29% | 81.38% | 0.102 | 0.224 0.896 0.887 0.951 0.886 | 0.843
NN | 88.71% | 11.29% | 81.44% | 0.097 | 0.215 0.899 0.887 0.953 0.887 | 0.844
SVM | 70.96% | 29.03% | 51.98% | 0.294 | 0.380 0.753 | 0.710 0.855 0.688 | 0.579
KNN | 69.35% | 30.64% | 50.92% | 0.207 | 0.449 0.734 | 0.694 0.864 0.694 | 0.558
BG | 87.10% | 12.90% | 78.71% | 0.128 | 0.245 0.885 0.871 0.946 0.870 | 0.824
DT | 77.42% | 22.58% | 62.34% | 0.196 | 0.312 0.853 0.774 0.902 0.745 | 0.704
C45 | 87.10% | 12.90% | 78.74% | 0.110 | 0.265 0.871 0.871 0.947 0.871 | 0.818
RF | 87.10% | 12.90% | 78.71% | 0.133 | 0.258 0.885 | 0.871 0.946 0.870 | 0.824
CART | 87.10% | 12.90% | 78.71% | 0.124 | 0.266 0.885 0.871 0.946 0.870 | 0.824
HT | 83.87% | 16.13% | 73.24% | 0.121 | 0.258 0.834 0.839 0.924 0.835 | 0.767
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Flgure 5. Scatterplot Matrix by Groups for CMC Dataset

Table 8. Performance Measures of CMC Dataset
CA CCl ICI Kappa | MAE | RMSE | Precision | Recall | Specificity mean-ure MCC
NB | 44.74% | 55.25% | 17.06% | 0.382 | 0.476 0.473 0.447 0.731 0.453 | 0.179
LDA | 53.56% | 46.44% | 26.92% | 0.385 | 0.443 0.526 0.536 0.743 0.525 | 0.282
LR |51.86% | 48.13% | 23.86% | 0.382 | 0.442 0.501 0.519 0.729 0.503 | 0.250
NN | 52.88% | 47.12% | 28.27% | 0.360 | 0.447 0.549 0.545 0.758 0.529 | 0.305
SVM | 50.51% | 49.49% | 22.83% | 0.372 | 0.473 0.502 0.505 0.732 0.500 | 0.239
KNN | 41.02% | 58.98% | 9.24% | 0.391 | 0.617 0.416 0.410 0.684 0.411 | 0.096
BG | 54.24% | 45.76% | 28.9% | 0.330 | 0.431 0.566 0.592 0.765 0.536 | 0.305
DT | 53.90% | 46.10% | 27.27% | 0.381 | 0.439 0.541 0.539 0.747 0.532 | 0.292
C4.5 | 53.22% | 46.78% | 26.77% | 0.349 | 0.469 0.525 0.532 0.743 0.522 | 0.277
RF | 50.51% | 49.49% | 22.19% | 0.355 | 0.451 0.497 0.505 0.725 0.496 | 0.234
CART | 51.53% | 48.47% | 25.86% | 0.352 | 0.435 0.543 0.515 0.756 0.517 | 0.279
HT | 43.39% | 56.61% | 16.63% | 0.391 | 0.506 0.470 0.434 0.737 0.434 | 0.170
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Figure 6. Scatterplot Matrix by Groups for Image Segmentation Dataset

Table 9. Performance Measures of Image Segmentation Dataset

CA CClI ICI Kappa | MAE | RMSE | Precision | Recall | Specificity mean-u re MCC
NB | 79.43% | 20.56% | 75.93% | 0.061 | 0.234 0.810 0.794 0.964 0.776 | 0.757
LDA |91.12% | 8.87% |89.64% | 0.03 | 0.142 0.912 0.911 0.985 0.910 | 0.896
LR |96.10% | 3.89% | 95.45% | 0.017 | 0.094 0.963 0.961 0.993 0.961 | 0.955
NN | 97.62% | 2.38% | 97.22% | 0.04 | 0.082 0.977 0.976 0.996 0.976 | 0.972
SVM | 93.07% | 6.92% | 91.91% | 0.205 | 0.303 0.931 0.931 0.988 0.930 | 0.918
KNN | 97.40% | 2.60% | 96.97% | 0.017 | 0.086 0.974 0.974 0.995 0.974 | 0.969
BG |96.97% | 3.03% | 96.46% | 0.020 | 0.085 0.970 0.970 0.995 0.970 | 0.965
DT |89.83% | 10.17% | 88.19% | 0.097 | 0.178 0.930 0.898 0.984 0.904 | 0.895
C45 |96.32% | 3.67% | 95.7% | 0.122 | 0.099 0.963 0.963 0.994 0.963 | 0.957
RF |98.48% | 1.51% |98.23% | 0.014 | 0.069 0.985 0.985 0.997 0.985 | 0.982
CART | 96.53% | 3.46% | 95.95% | 0.017 | 0.091 0.966 0.965 0.994 0.965 | 0.960
HT 79% 21% | 75.44% | 0.064 | 0.238 0.795 0.790 0.963 0.774 | 0.750
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Figure 7. Scatterplot Matrix by Groups for Artificial Characters Dataset

Table 10. Performance Measures of Artificial Characters Dataset

CA CCl ICI Kappa | MAE | RMSE | Precision | Recall | Specificity F- MCC
measure
NB | 29.30% | 70.69% | 21.88% | 0.15 | 0.296 0.356 0.293 0.928 0.289 | 0.235
LDA | 34.73% | 65.26% | 27.04% | 0.152 | 0.277 0.351 0.347 0.923 0.334 | 0.269
LR | 34.83% | 65.16% | 27.19% | 0.149 | 0.273 0.334 0.348 0.924 0.333 | 0.263
NN | 50.10% | 49.90% | 44.33% | 0.113 | 0.244 0.610 0.501 0.942 0.481 | 0.469
SVM | 40.95% | 59.05% | 34.11% | 0.167 | 0.284 0.424 0.409 0.932 0.401 | 0.342
KNN | 90.31% | 9.68% | 89.18% | 0.019 | 0.136 0.904 0.903 0.989 0.903 | 0.892
BG | 74.41% | 25.59% | 71.44% | 0.071 | 0.184 0.748 0.744 0.971 0.744 | 0.717
DT | 65.02% | 34.98% | 60.81% | 0.120 | 0.223 0.669 0.650 0.958 0.642 | 0.612
C4.5 | 73.73% | 26.27% | 70.7% | 0.053 | 0.192 0.744 0.737 0.971 0.737 | 0.709
RF ]91.10% | 8.90% | 90.06% | 0.019 | 0.132 0.912 0.911 0.990 0.911 | 0.901
CART | 68.44% | 31.56% | 64.81% | 0.070 | 0.206 0.691 0.684 0.965 0.685 | 0.651
HT | 35.81% | 64.18% | 28.91% | 0.135 | 0.306 0.481 0.358 0.933 0.340 | 0.316
Table 11. The Overall Performance
Dataset | CA | CCI | ICI | Kappa | M | RM | Precisi | Rec | Specifi F- MCC
A | SE on all city meas
E ure
Breast | RF | 97.85| 2.1 | 95.03% | 0.0 | 0.15 | 0.980 | 097 | 0.991 | 0.979 | 0.952
cancer % 4% 32 0 9
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Breast | KN | 77.27 | 22. | 72.29% | 0.0 | 0.26 | 0.909 | 0.77 | 0.978 | 0.824 | 0.800
Tissue N % 73 89 7 3
%
Vehicle | LR [ 81.17 | 18. | 74.87% | 0.1 | 0.27 | 0.804 | 0.81 | 0.934 | 0.805 | 0.744
% 82 16 2 2
%
Vertebral | NN | 88.71 | 11. | 81.44% | 0.0 | 0.21 | 0.899 | 0.88 | 0.953 | 0.887 | 0.844
column % 29 97 5 7
%
CMC BG [54.24 | 45. | 289% | 0.3 | 043 | 0.566 | 0.59 | 0.765 | 0.536 | 0.305
% 76 30 1 2
%
Image RF | 9848 | 1.5 | 98.23% | 0.0 | 0.06 | 0.985 | 0.98 | 0.997 | 0.985 | 0.982
segmenta % 1% 14 9 5
tion
Artificial | RF | 91.10 | 8.9 | 90.06% | 0.0 | 0.13 | 0.912 | 0.91 | 0.990 | 0.911 | 0.901
character % 0% 19 2 1
S

For Table 4, all algorithms provide relatively higher accuracy and random forest gives the highest
accuracy (97.85%). It is worth noting that all algorithms provide relatively higher kappa value and
random forest gives the highest value (95.03%). It is worth mentioned that all algorithms provide
relatively higher precision and random forest gives the highest value (98%). It is notice that all
algorithms provide relatively higher recall and random forest gives the highest value (97.9%). From
the table, all algorithms provide relatively higher specificity and random forest gives the highest value
(99.1%).

For Table 5, all the algorithm provides average performance and KNN has the highest accuracy
(77.27%). all of the algorithm provides average performance and C4.5 has the highest kappa statistic
(66.67%). It is worth noting that all the algorithm provides good performance and KNN has the
highest precision value of (90.9%). It is noticed that all the algorithms provide good performance and
KNN has the highest recall value of (77.3%). It is worth noting that all the algorithm provides good
performance and KNN has the highest specificity value of (97.8%).

For Table 6, logistic regression provides the highest accuracy (81.17%) and other algorithms give
relatively lower accuracy than logistic regression. It is worth noting that logistic regression provides
the highest kappa value (74.87%) and other algorithms give relatively lower value than logistic
regression. It is notice that logistic regression provides the highest precision value (80.40%) and other
algorithms gives relatively lower value than logistic regression. it can be seen that logistic regression
provides the highest recall value (81.2%) and other algorithms give relatively lower value than
logistic regression. It is noticed that logistic regression provides the highest specificity value (93.4%)
and other algorithms give relatively lower value than logistic regression.
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For Table 7, NN and LR provide highest accuracy (88.71%) and Bagging, C4.5, RF, CART provide
the same value (87.10%). It is notice that NN and LR provides highest accuracy (81.38%) and
Bagging, C4.5, RF and CART has the kappa value (78.71%). In addition, NN and LR provide the
highest precision value (89.60%) and Bagging, RF and CART have the precision of (88.50%).
Moreover, NN and LR provide the highest recall value (88.70%) and Bagging, C4.5, RF and CART
have the recall value of (87.1%). It is clear that NN provides the highest specificity value (95.3%).

For Table 8, the accuracy of all algorithms is less than 60%. It is noticed that the kappa value of all
algorithms is less than 30%. It is worth noting that the precision of all algorithms is less than 60%
and NN has the highest precision (56.6%). It is more notice that the recall of all algorithms is below
60% and NN has the highest precision (59.2%). It is worth mentioned that the specificity of NN
(76.5%) algorithm are higher than the other algorithms.

In Table 9, all algorithms provide relatively higher accuracy and random forest gives the highest
accuracy (98.48%). It is worth noting that all algorithms provide relatively higher kappa value and
random forest gives the highest value (98.23%). It is notice that all algorithms provide relatively
higher precision and random forest gives the highest value (98.5%). It can be clearly seen that all
algorithms provide relatively higher recall value and random forest gives the highest value (98.5%).
It is worth mentioned that all algorithms provide relatively higher specificity value and random forest
gives the highest value (99.7%).

For Table 10, RF and KNN provide relatively higher accuracy and RF has the highest accuracy
(91.10%). It is noticed that RF and KNN provide relatively higher kappa statistic and RF has the
highest kappa value (90.06%). It is worth mentioning that RF and KNN provide relatively higher
precision and RF has the highest value (91.20%). It can be clearly seen that RF and KNN provide
relatively higher recall and RF has the highest value (91.10%). It is noticed that RF and KNN provide
relatively higher specificity and RF has the highest value (99%).

From Table 11, it can be seen that all the algorithms are highly significant for breast cancer and image
segmentation dataset. The Random Forest (RF) algorithm has the higher value of F-measure on 3 out
of 7 datasets (breast cancer, image, and artificial characters). The LR also gives the higher value of
F-measure for vehicle (80.5%) and vertebral column (88.70%). K-NN also provides the highest
significant value of F-measure for breast tissue dataset. Bagging provides the highest value of F-
measure (53.60%) for CMC dataset. For image and artificial dataset Random Forest (RF) provides
highest value of F-measure (98.5% and 91.10%). It is seen that for image segmentation and artificial
dataset, the RF provides the highest MCC values are (0.98 and 0.90). For breast cancer, vehicle, and
vertebral column dataset, the LR gives the highest MCC values are (0.97, 0.74 and 0.84). For breast
tissue dataset, KNN provides the largest value of MCC (0.80) and for CMC dataset all algorithm
shows the lowest value of MCC. We also see that the LR gives the best MCC value in 3 out of 7
datasets. It is worth mentioned that for breast cancer dataset, the SVM gives the lesser error rate (0.03)
as it provides more perfect prediction and lesser variance in predictions. For vehicle dataset, the LR
and NN algorithm provides smallest error rate (0.12). For vertebral column and breast tissue dataset,
the LR provides smaller error rate (0.10 and 0.11). For CMC dataset, C4.5 and CART shows the
lesser error rate are (0.35). For image dataset, the NN, KNN and CART provides the smaller error
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rate (0.01). For artificial dataset, the KNN and RF performs better as they provide lowest error rate
(0.02). It is notice that the Random Forest (RF) algorithm provides lowest root mean square error of
5 (breast cancer (0.15), vehicle (0.28), breast tissue (0.27), image segmentation (0.07) and artificial
characters (0.13)) out of 7 datasets. For vertebral column dataset, the LR provides lesser error rate
(0.22) than the other algorithms. For CMC dataset, the KNN provides the lowest root mean square
error (0.43).

4. CONCLUSION

Twelve different machine learning algorithms were considered: NB, LDA, LR, ANN, SVM, K-NN,
HT, DT, C4.5, CART, RF and BB that have been applied on seven datasets. The results show that
Random Forest (RF) was found to be the algorithms with most accuracy, precision and Matthew’s
correlation coefficient (MCC). Other four algorithms: NN, NB, BB and LR were found to be the next
accurate after RF accordingly. While kappa statistic and RMSE is another factor. For future research,
there is a plan to make hybridization of SVM and ANN to enhance and improve the performance of
that type of successful famous machine learning algorithm.
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