

Even Vertex in-Magic Total Labeling of Some 2-Regular Digraphs

M.Sindhu^{1*}, S. Chandra Kumar²

^{1*,2}Research Scholar, Associate Professor, Department of Mathematics, Scott Christian College(Autonomous), Nagercoil, Tamilnadu, India.

> *Email: ²kumar.chandra82* @yahoo.com *Corresponding Email: ^{1*}msindhu0387* @gmail.com

Received: 29 June 2021 Accepted: 16 September 2021 Published: 20 October 2021

Abstract: Let D be a directed graph with p vertices and q arcs. A vertex in-magic total labeling (VIMTL) is a bijection $f: V(D) \cup A(D) \rightarrow \{1, 2, ..., p + q\}$ with the property that for every $v \in V(D), f(v) + \sum_{u \in I(v)} f((v, u)) = M$, for some constant M. Such labeling is Even if $f(V(D)) = \{2, 4, 6, ..., 2p\}$. In this paper, we explore the Even Vertex In-magic total labeling (EVIMTL) of some 2-regular directed graphs.

Keywords: Digraphs, Vertex In-Magic Labeling, Even Vertex In-Magic Total Labeling

1. INTRODUCTION

Graph Labeling is one of the most growing areas in graph theory. In graph theory, the labeling of graphs noticed to be a theoretical topic. It is used in countless applications like coding theory, X-Ray crystallography and astronomy etc. Design of graph labeling is helpful to network security, network addressing and social network in communication network. A magic total labeling of a graph is a motivating research area.

Throughout this paper, D = (V, A) is taken as a digraph with p vertices and q arcs. For a vertex $v \in V(D)$, the set $I(v) = \{u | (u, v) \in A(D)\}$ is called the in-neighbourhood of v. The in-degree of v is defined by $deg^{-}(v) = |I(v)|$. A general reference for graph theoretic notions is[1].

A labeling of a graph G is a mapping from a set of vertices(edges) into a set of numbers, usually integers. Many kinds of labelings have been studied and an excellent survey of graph labelings can be found in [2].

In 1963, Sedlàček^[4] introduced the concept of magic labeling in graphs. A graph G is *magic* if the edges of G can be labelled by a set of numbers $\{1, 2, ..., q\}$ so that the sum of labels of all the edges incident with any vertex is the same.

In 2002,Macdougall et al.[3] introduced the notion of vertex magic total labeling (VMTL) in graphs. Let G(V, E) be a graph with |V(G)| = p and |E(G)| = q. A one-to-one map f from $V(G) \cup E(G)$ onto the integers $\{1, 2, ..., p + q\}$ is a VTML if there is a constant M so that for every vertex $x \in V(G), f(x) + \sum f(xy) = M$, where the sum is taken over all vertices y adjacent to x.

In 2015,Alison M.Marr et.al[5] extended the study of VMTL in directed graphs, in the name 'vertex in-magic total labelings'. In the same year, Arumugam et.al[6] introduced the notion of E- super vertex in-magic total labeling(E-SVIMTL) in digraphs. A vertex in-magic total labeling of a digraph *D* is a bijection *f* from $V(D) \cup A(D) \rightarrow \{1, 2, ..., p + q\}$ with the property that for every vertex $v \in V(D)$, $f(v) + \sum_{u \in I(v)} f((v, u)) = M$, for some constant *M*. Such a labeling is E-super vertex-in total(E-SVIMT) if $f(A) = \{1, 2, 3, .., q\}$. A digraph *D* which admits an E- SVIMTL is called an E-SVIMTL digraph.

CT. Nagaraj et al[7] in introduced the concept of an Even vertex magic total labeling. A vertex magic total labeling is even if $f(V(G)) = \{2,4,...,2n\}$. A graph is called an even vertex magic if the graph has an even vertex magic total labeling.

C.T Nagaraj et al[8] also studied Even vertex magic total labeling of some 2-regular graphs.

In this paper we define a new labeling called Even Vertex-In Magic Total Labeling(EVIMTL). An Even Vertex-In Magic Total Labeling(EVIMTL) is a bijection $f: V(D) \cup A(D) \rightarrow \{1, 2, ..., p + q\}$ with the property $f(V(D)) = \{2, 4, 6, ..., 2p\}$ and for every $v \in V(D), f(v) + \sum_{u \in I(v)} f((v, u)) = M$, for some constant M. A digraph that admits an EVITML is called an Even vertex-in magic total(EVIMT). From the definition of EVITML, it is easy to observe that $p \leq q$.

2. MAIN RESULTS

In this section, we verify the existence of Even vertex-in magic total labeling for some 2-regular digraphs.

Lemma 2.1. If a digraph D(p,q) is an even vertex-in magic total (EVIMT), then the magic constant *M* is given by $M = \frac{(p+q)(p+q+1)}{2p}$.

Proof: Let *f* be an EVIMTL of D. Note that $M = f(v) + \sum_{u \in I(v)} f((v, u))$ for all $v \in V(D)$. Summing over all $v \in V(D)$, we get

$$pM = \sum_{v \in V(D)} f(v) + \sum_{v \in V(D)} \sum_{u \in I(v)} f((v,u)) = \sum_{v \in V(D)} f(v) + \sum_{v \in V(D)} \sum_{u \in I(v)} f((v,u))$$
$$pM = [1 + 3 + \dots + 2p - 1] + [2 + 4 + \dots + 2p] + [1 + 2 + \dots + (p + q)] - [1 + 2 + \dots + 2p]$$
$$pM = [1 + 2 + \dots + (p + q)] = \frac{(p+q)(p+q+1)}{2} \text{ and}$$
Hence $M = \frac{(p+q)(p+q+1)}{2p}$.

Theorem 2.1 The digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t}}$, $t \ge 1$ admits EVIMTL with magic constant 8t + 7

Proof:

Let the $V(D) = \{a_i: 1 \le i \le 3\} \cup \{b_i: 1 \le i \le 4t\}$ and $A(D) = \{(a_i, a_{i \oplus_3 1}): 1 \le i \le 3\} \cup \{(b_i, b_{i \oplus_4 t}): 1 \le i \le 4t\}$ be the vertex set and arc set of *D* respectively.

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 8t + 6\}$ as follows

$$f(u) = \begin{cases} 8t + 2i & if \ u = a_i \ for \ 1 \le i \le 3\\ 2i & if \ u = b_i \ for \ 1 \le i \le 4t \end{cases}$$
 and

$$f(e) = \begin{cases} 7-2i & if \ e = (a_i, a_{i \oplus_3 1}) \ for \ 1 \le i \le 3 \\ 8t + 7 - 2i & if \ e = (b_i, b_{i \oplus_{4t} 1}) for \ 1 \le i \le 4t \end{cases}$$

Now we prove f is an EVIMTL

Case 1: Suppose $v = a_i$ Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_{i \oplus_3 1})) = [8t + 2i] + [7 - 2i] = 8t + 7.$

Case 2: Suppose $v = b_i$ Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_{i \oplus_{4t} 1})) = [2i] + [8t + 7 - 2i] = 8t + 7.$

The digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t}}$, $t \ge 1$ admits EVIMTL with the magic constant 8t + 7.

Example 2.2 Consider the digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t}}$ taking t = 4. Here $V(D) = \{a_i : 1 \le i \le 3\} \cup \{b_i : 1 \le i \le 16\}$ and $A(D) = \{(a_i, a_{i \oplus_3 1}) : 1 \le i \le 3\} \cup \{(b_i, b_{i \oplus_1 6}1) : 1 \le i \le 16\}$ be the vertex set and arc set of *D* respectively.

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 38\}$ as follows

$$f(u) = \begin{cases} 32+2i & if \ u = a_i \ for \ 1 \le i \le 3\\ 2i & if \ u = b_i \ for \ 1 \le i \le 16 \end{cases}$$
 and

$$f(e) = \begin{cases} 7 - 2i & if \ e = (a_i, a_{i \oplus_3 1}): \ 1 \le i \le 3\\ 39 - 2i & if \ e = (b_i, b_{i \oplus_{16} 1}) for \ 1 \le i \le 16 \end{cases}$$

Now we prove f is an EVIMTL

Case 1: Suppose $v = a_i$ for i = 1,2,3Then $f(v) + \sum_{u \in I(v)} f((v,u)) = f(a_i) + f((a_i, a_{i \oplus_3 1})) = [32 + 2i] + [7 - 2i] = 39.$

Case 2: Suppose $v = b_i$ for $1 \le i \le 16$ Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_{i \oplus_{16}})) = [2i] + [39 - 2i] = 39.$

The graph $C_3 \cup C_{4t}$, $t \ge 1$ is EVIMT with the magic constant 39.

Theorem 2.3 The digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t+2}}$, $t \ge 1$ admits EVIMTL with magic constant 8t + 11.

Proof:

Let the $V(D) = \{a_i: 1 \le i \le 3\} \cup \{b_i: 1 \le i \le 4t + 2\}$ and $A(D) = \{(a_i, a_i \oplus_{31}): 1 \le i \le 3\} \cup \{(b_i, b_i \oplus_{4t+21}): 1 \le i \le 4t + 2\}$ be the vertex set and arc set of *D* respectively.

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 8t + 10\}$ as follows

$$f(u) = \begin{cases} 8t + 2i + 4 & if \ u = a_i & for \ 1 \le i \le 3\\ 2i & if \ u = b_i & for \ 1 \le i \le 4t + 2 \end{cases}$$
 and

$$f(e) = \begin{cases} 7-2i & if \ e = (a_i, a_{i \oplus_3 1}): \ 1 \le i \le 3\\ 8t+11-2i & if \ e = (b_i, b_{i \oplus_{4t+2} 1}) for \ 1 \le i \le 4t+2 \end{cases}$$

Now we prove f is an EVIMTL

Case 1: Suppose $v = a_i$ for $1 \le i \le 3$ Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_{i \oplus_3 1})) = [8t + 2i + 4] + [7 - 2i] = 8t + 11.$

Case 2: Suppose $v = b_i$ for $1 \le i \le 4t + 2$ Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_{i \oplus_{4t+2}})) = [2i] + [8t + 11 - 2i] = 8t + 11.$

The graph $C_3 \cup C_{4t+2}$, $t \ge 1$ admits EVIMTL with the magic constant 8t + 11.

Example 2.4 Consider the digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t+2}}$ taking t = 4. Here $V(D) = \{a_i : 1 \le i \le 3\} \cup \{b_i : 1 \le i \le 18\}$ and $A(D) = \{(a_i, a_{i \oplus_3 1}) : 1 \le i \le 3\} \cup \{(b_i, b_{i \oplus_{18} 1}) : 1 \le i \le 18\}$ be the vertex set and arc set of *D* respectively.

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 42\}$ as follows

$$f(u) = \begin{cases} 36+2i & if \ u = a_i \ for \ 1 \le i \le 3\\ 2i & if \ u = b_i \ for \ 1 \le i \le 18 \end{cases}$$
 and

$$f(e) = \begin{cases} 7-2i & if \ e = (a_i, a_{i \oplus_3 1}) \ for \ 1 \le i \le 3 \\ 43-2i & if \ e = (b_i, b_{i \oplus_{18} 1}) \ for \ 1 \le i \le 18 \end{cases}$$

Now we prove f is an EVIMTL

Case 1: Suppose $v = a_i$ for $1 \le i \le 3$ Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_{i \oplus_3 1})) = [36 + 2i] + [7 - 2i] = 43.$

Case 2: Suppose $v = b_i$ for $1 \le i \le 4t + 2$ Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_{i \oplus_{18}})) = [2i] + [43 - 2i] = 43.$

The graph $C_3 \cup C_{4t+2}$, $t \ge 1$ is EVIMT with the magic constant 43.

Theorem 2.5 The digraph $D = \overrightarrow{C_4} \cup \overrightarrow{C_{4t+3}}$, $t \ge 1$ admits EVIMTL with magic constant 8t + 15.

Proof:

Let the $V(D) = \{a_i: 1 \le i \le 4\} \cup \{b_i: 1 \le i \le 4t + 3\}$ and $A(D) = \{(a_i, a_{i \oplus_4 1}): 1 \le i \le 4\} \cup \{(b_i, b_{i \oplus_{4t+3} 1}): 1 \le i \le 4t + 3\}$ be the vertex set and arc set of *D* respectively.

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 8t + 14\}$ as follows

 $f(u) = \begin{cases} 8t + 2i + 6 & if u = a_i \text{ for } 1 \le i \le 4\\ 2i & if u = b_i \text{ for } 1 \le i \le 4t + 3 \end{cases}$

and

 $f(e) = \begin{cases} 9-2i & if \ e = (a_i, a_{i \oplus_4 1}): \ 1 \le i \le 4 \\ 8t + 15 - 2i & if \ e = (b_i, b_{i \oplus_{4t+3} 1}) for \ 1 \le i \le 4t + 3. \end{cases}$

Now we prove f is an EVIMTL

Case 1: Suppose $v = a_i, 1 \le i \le 4$

Then
$$f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_{i \oplus_4 1})) = [8t + 2i + 6] + [9 - 2i] = 8t + 15.$$

Case 2: Suppose $v = b_i$, $1 \le i \le 4t + 3$

Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_{i \oplus 4t+3})) = [2i] + [8t + 15 - 2i] = 8t + 15.$

The digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t}}$, $t \ge 1$ admits EVIMTL with the magic constant 8t + 15.

Example 2.6 Consider the digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t+3}}$ taking t = 3

Here $V(D) = \{a_i : 1 \le i \le 4\} \cup \{b_i : 1 \le i \le 15\}$ and $A(D) = \{(a_i, a_{i \oplus_4 1}) : 1 \le i \le 4\} \cup \{(b_i, b_{i \oplus_{15} 1}) : 1 \le i \le 15\}$ be the vertex set and arc set of *D* respectively.

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 38\}$ as follows

$$f(u) = \begin{cases} 30+2i & if \ u = a_i \ for \ 1 \le i \le 4\\ 2i & if \ u = b_i \ for \ 1 \le i \le 15 \end{cases}$$
 and

$$f(e) = \begin{cases} 9-2i & if \ e = (a_i, a_{i \oplus_4 1}): \ 1 \le i \le 4 \\ 39-2i & if \ e = (b_i, b_{i \oplus_{15} 1}) for \ 1 \le i \le 15 \end{cases}$$

Now we prove f is an EVIMTL

Case 1: Suppose $v = a_i$ for $1 \le i \le 4$

Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_{i \oplus_4 1})) = [30 + 2i] + [9 - 2i] = 39.$

Case 2: Suppose $v = b_i$ for $1 \le i \le 15$

Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_{i \oplus_{15}})) = [2i] + [39 - 2i] = 39.$

The graph $C_3 \cup C_{4t+3}$, $t \ge 1$ is EVIMT with the magic constant 39.

Theorem 2.7 The digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t+1}}$, $t \ge 1$ admits EVIMTL with magic constant 8t + 11.

Proof:

Let the $V(D) = \{a_i: 1 \le i \le 4\} \cup \{b_i: 1 \le i \le 4t + 1\}$ and $A(D) = \{(a_{i,j}, a_{i \oplus_4 1}): 1 \le i \le 4\} \cup \{(b_{i,j}, b_{i \oplus_{4t+1} 1}): 1 \le i \le 4t + 1\}$ be the vertex set and arc set of *D* respectively.

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 8t + 10\}$ as follows

$$f(u) = \begin{cases} 8t + 2i + 2 & if \ u = a_i \ for \ 1 \le i \le 4 \\ 2i & if \ u = b_i \ for \ 1 \le i \le 4t + 1 \end{cases}$$
 and

$$f(e) = \begin{cases} 9-2i & if \ e = (a_i, a_{i \oplus_4 1}): \ 1 \le i \le 4 \\ 8t+11-2i & if \ e = (b_i, b_{i \oplus_{4t+1} 1}) for \ 1 \le i \le 4t+1 \end{cases}$$

Now we prove f is an EVIMTL

Case 1: Suppose $v = a_i$ for $1 \le i \le 4$ Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_{i \oplus_3 1})) = [8t + 2i + 4] + [9 - 2i] = 8t + 11.$

Case 2: Suppose $v = b_i$ for $1 \le i \le 4t + 1$ Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_{i \oplus_{4t+1}})) = [2i] + [8t + 11 - 2i] = 8t + 11.$

The graph $C_3 \cup C_{4t+2}$, $t \ge 1$ admits EVIMTL with the magic constant 8t + 11.

Example 2.4 Consider the digraph $D = \overrightarrow{C_3} \cup \overrightarrow{C_{4t+1}}$ taking t = 3. Here $V(D) = \{a_i : 1 \le i \le 4\} \cup \{b_i : 1 \le i \le 13\}$ and $A(D) = \{(a_i, a_{i \oplus_3 1}) : 1 \le i \le 4\} \cup \{(b_i, b_{i \oplus_1 3}1) : 1 \le i \le 13\}$ be the vertex set and arc set of *D* respectively.

Define $f: V(D) \cup A(D) \rightarrow \{1, 2, \dots, 34\}$ as follows

$$f(u) = \begin{cases} 26+2i & if \ u = a_i \ for \ 1 \le i \le 4\\ 2i & if \ u = b_i \ for \ 1 \le i \le 13 \end{cases}$$
 and

$$f(e) = \begin{cases} 9-2i & if \ e = (a_i, a_{i \oplus_4 1}) \ for \ 1 \le i \le 4 \\ 35-2i & if \ e = (b_i, b_{i \oplus_{13} 1}) \ for \ 1 \le i \le 13 \end{cases}$$

Now we prove f is an EVIMTL

Case 1: Suppose $v = a_i$ for $1 \le i \le 4$

Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(a_i) + f((a_i, a_{i \oplus_4 1})) = [26 + 2i] + [9 - 2i] = 35.$

Case 2: Suppose $v = b_i$ for $1 \le i \le 13$

Then $f(v) + \sum_{u \in I(v)} f((v, u)) = f(b_i) + f((b_i, b_{i \oplus_{13}})) = [2i] + [35 - 2i] = 35.$

The graph $C_3 \cup C_{4t+1}$, $t \ge 1$ is EVIMT with the magic constant 35.

3. CONCLUSIONS

In this paper we have discussed some cycles of graphs that admits EVIMTL. In future we can prove different types of graphs which satisfy EVIMTL.

4. **REFERENCES**

- 1. J.A.Bondy and U.S.R.Murty, Graph Theory with Applications, Elsevier, North Holland, New York, (1986)
- J.A. Gallian, A dynamic survey of graph labeling electronic, J.Combinatorics 5(2002) # D56.
- 3. J.A. MacDougall, M.Miller, Slamin, W.D.Wallis, Vertex magic total labeling of graphs,

- 4. Util.Math 61 (2002) 3-21.
- 5. J. Sedla'c'ek, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, June (1963) 163-167.
- 6. A.M.Marr,S.Ochel and B.Perez,In-Magic Total Labelings of Digraphs, J.Graph Labeling,1(2)(2015),81-93.
- 7. S. Arumugam, M. Balakrishnan and G. Marimuthu, E-Super Vertex In-Magic Total Labelings of Digraphs, Electronic Notes in Discrete Mathematics, 48 (2015), 111-118.
- 8. CT.Nagaraj, C.Y.Ponnappan, G.Prabakaran, Even vertex magic total labeling of some graphs, International Journal of Pure and Applied Mathematics, 2018, 118(10).
- 9. CT.Nagaraj, C.Y.Ponnappan, G.Prabakaran, Even vertex magic total labeling of some 2-regular graphs, International Journal of Mathematics Trends and Technology, Volume54,No.1,February(2018).