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Abstract: In this article, we focus our study on estimation the variance components in the
two methods: the maximum likelihood function and the maximum penalized likelihood
function of the repeated measurements model, which contain three random effects as well
as random error, comparing between these estimators based on the mean square error , we
also studied the bias and variance for each estimator and supported the theoretical side
with an applied example to illustrate the results.
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1. INTRODUCTION

Repeated measurements are data that show the response variable for each experimental unit
many times and perhaps under various experimental settings [8]. Measurements that are
repeated data are derived from experiments in which observations are made regularly over
time. In the case of a repeated measurement experiment involves observing experimental
units at various times in time. The experimental units are monitored at different times in time
during the experiment. The analysis of repeated measurements is often used in many
domains, including health and life sciences, epidemiological, agricultural, biomedical,
industrial, psychological, and educational studies [8],[15],[ 22].

The maximum likelihood estimation is a method of estimating the coefficients of a statistical
model and finding it for a set of data, by estimating the median of that model. When applied
to a set of data and given a statistical model, the most likely probability estimate provides
estimates for the model coefficients [19].

In theory of item responses, penalized likelihood model estimation has been utilized to
produce better balanced estimates and to prevent boundary estimations in log-linear models,
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logistic regression, and latent variable analysis. This method has also been used to construct
non-degenerate covariance matrices in finite mixtures of normal densities and multivariate
regression. The penalized likelihood technique to ignoring boundary estimates for variance
parameters in multilevel models is comparable to, but more broad than

[51.[6].[71,[16],[17],[20].

The repeated measurements model has been studied extensively for instance: Mohaisen, A. J.
and Abdulhussein discussed the fuzzy sets and penalized spline in Bayesian semiparametric
regression,[18]. Yin and et al, they introduce a Bayesian procedure for the mixed-effects
analysis of efficiency studies using mixed binomial regression models subjects in either one-
or two-factor repeated-measures designs,[23]. AL-Mouel, Mohaisen and Khawla they are
used Bayesian procedure based on Bayes quadratic unbiased estimator to the linear
one - way repeated measurements model, [3]. AL-Mouel and Al-Isawi computed the
quadratic unbiased estimator, which has minimum variance (best quadratic unbiased
estimate),[4]. Innocent Ngaruye, Dietrich von Rosen and Martin Singull discussed the mean-
squared errors of small area estimators under a multivariate linear model for repeated
measures data,[9]. Jassim and AL-Mouel they propose the lasso method for choice of penalty
level and investigate the error of the lasso estimator in repeated measurements model,[10].
AL-Mouel and Kori in (2021) studied estimating the parameters and properties of the
repeated measurement model in  two cases: conditional and unconditional,
[2].[11],[12],[13],[14].

In this article, we will focus our study on estimating the variance components in the two
methods: the maximum likelihood function and the maximum penalized likelihood function
of the repeated measurements model, which contain three random effects as well as random
error, comparing them based on mean square error , we will work on applying an applied
example to support and prove the theoretical aspect of this work to obtain identical results.

Formulation the Model

Wnpg = 1 +8p + 1 + EMpg + Onpy + Angg) + Pripg) + enap (1)
where W¥,,, is the response variable, &,andn, are the fixed effects for all p =

1,..,vand q =1, ...,s repectively, 0,4, Anq) and @npq) are the random effects for all
n=1,.,u,p=1..,vandqg=1,..,sand e, isarandomerror foralln =1, ...,u,p =
1,..,vandg=1,..,s.

p=1$p =0; Xg=1Mq = 0; X5=1(§M)pq =0 foreachq =1, ..., s;

g=1(§Mpq = 0 foreachq =1, ...,s.
And we assume that the random parameters and random error are independent with
Ongpy i.1.d ~N(0,08) . Angg i.i.d ~N(0,07), @uepgyi-i-d ~N(0,02) and
Exyz 1.1.d ~N(0,02) . (2)
The analysis of the variance table of the repeated measurements model included the sum of
squares terms, which can be represented as follow.
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Table (1): the ANOVA table of repeated measurements model
S B e D.F. ss MS E(MS)
variance
M
Tretr;ent v—1 SSe - _Sil = v=185 + s0p + 05 + 02
MS
eatment | _1 | s, ! s in2 + po} + 02 + o
Intrection (v—=1)(s MSgxn u s 2 2
& X1 -1 S (v—-D(-1) DD 2p=12a=1(8pq + ¢
MSg 2 2 2 2
Random 6 viu—1) SSe m sog + 03 + 0 + 0g
MSy 2 2 2 2
Random A s(u—1) SSy m 0g + voy + 0y + 0g
MS‘P 2 2 2 2
Random ¢ vs(u—1) SSe m og + 0y + 05 + og
Error e 9’;; s)(1 SSe MSg o
SStotal uvs — 1
Where,

SS{ =us Zz=1(¢{p. - 1{1)2 ) SSn =uv 2?;:1(@.1} - \TJ.")Z’

SSfxn = uz#=1 2117):1 Zf}:l(q{pq - LTJ.p. - LTJ..q + q’...)za

SS¢ = SZ%=1 Z;=1(¢np. - ‘Tj.p.)z’ S5, = UZ%=1 Zf{:l(an.q - l?..q)z,
SS(p = %=1 ZZ=1 ZZ:l(l?npq - lp.pq)z and

SSe = #:1 2117):1 qu:l(@.p. + q’..k - q’np. - LTJn.q)2

Where,

__1 yu v s _15u v
w T ups &n=1 Zp:l Zq:l Lpnpq 1 qJ..q — wpen=1 Zp:lanpq’

sl

W _ i u N _ l u
Lp.p. T us&n=1 Zq=1 lpanl lp.pq u n=1 Lpnpqi

— 1 v
lIJn pzltpn

j— _ 1 s
q4= 3 pq and Frp. s g=1 Prpq -

The distribution of sum square as follows:

SSe~a2x*((v + s)(1 —w)), SSe~(s0§ + 02 + o) x*(v — 1),

SSy~(vof + 0 + 02)x*(vs — 1), SSexy~(02 + 02)x*(v(v — 1)(s — 1)),
SSe~(s0§ + 0f + 05 + 02)x*(w(u — 1)), SS3~(0§ + vog + 02 + 62 )x*(s(u — 1))
and SS,~(04 + of + 03 + 02)x*(vs(u — 1)).

Maximum Likelihood Estimator of Variance Components
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the likelihood function for the model (1) as follow:
exf- 20}
L) === ®3)
where
Q= & 5S¢ SSy SSexn SSg SS; Sy

a2 sa§+cr(2p+cr§ Vi +05+05  05+0;  soG+ai+05+0% + 04+v0;+05+0% + 04+05+05+0¢

uvs(P_ —u)?
S05+v0i+05+0%
and

— npq 2\ (A-wWW+s) o2 2 27;(w-1) 2 2 275(s—1) 2
A= (2n)2""(af)>2 (sog + % + 05)2 (voy + o5+ cre )z (op +

1
62120 DD (52 4 42 o2 $U-1D. 5 5
05)2 (sai +o0; +og+ ) (09+va,1+a<p+a) (09+a,1+6<p+

c2)2 2vs(u= V(sog +va? + 02 + 032)

The log-likelihood function of (3) can be written as:
InL(¥Y) = — %[npq m2r)+ (1 —uw)(@+s)In(6?) + (v—1) ln(sag + a(p +
02) + (s — Din(vaf + 6 + 02) + (v — D(s — Din(c3 + 02) + v(u —
Din(sog + of + 64 + 02) + s(u—1) In(6§ + vof + 02 + 02) + vs(u —

2 559 SSg
Din(og + of + o5+ 02) + In(so§ + vaf + 05+ 02) += p —SJ§+J§)+J§
SSp SSexn SSg n SS; SSe uvs(P_ —u)?
Voi+05+05  05+0%  SOG+0i+05+0% | 0fH+voi+0L+0f | 0G+05+05+05  SO5+vai+05+0f
- - - - - (4)
Now, we will maximize the equation (4) with respect to o2 and equal to zero, we have that
dLn L(W¥) 1[(1-w)(v+s) SSe
=~ 7= 2| =0
dog 2 o5 O¢
(1-w)(v+s) SSe
—a =0
O¢ Oe
1-ww+s)s?2—-55,=0
~ SS
<62 = s = MSs ©)

e T (1—w(v+s)

Now, we will maximize the equation (4) with respect to (aqz, + aez) and equal to zero, we
have that

OLnL(¥) _  1|@w-1(s-1)  SSexy -0
6(a<p+ae) 2| oj+0l (o, (p+0‘e)
a2 __SSem a2
% " e~ %
A2 §xn A2
Oy —m-O’e —MSfxr/_MSE (6)

Now, we will maximize the equation (4) with respect to (so + a2 + 0Z) and equal to zero,
we have that
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dLn L(¥) _ 1 (v-1) sSSg —0
6(sog+o +O’e) 2 soé+a§,+oe (So'e.l.o'(p.l.o'e)
52 — SSg— csr(p—crg
. 6'\92 _ MSQ—MS$XW—MSE (7)

N

Now, we will maximize the equation (4) with respect to (va; + 62 + 0Z) and equal to zero,

we have that
alnL(¥) 1 (s-1)

6(v0/%+0 +O’e) - El + (p+ae B (vo’l+o'(p+o'e) l

~2 _ (SSy/s-1)-8%-52
0, =

v
a2 MSy—MSgy o, —MSg
S0 =

(8)

v

Theorem 1: The maximum likelihood estimators of variance components are unbiased.
Proof:

E(G2) —0f=E (ﬁ) — 6% = = E(55.)—§
= S0 u)(v+s) ——— (1-wWw+5s))62-62=0
E(85) — 0 = [@,_Sls)sﬁ_&e]_%=mE[SS€Xn_6eZ]_U£
= E[SSpy — 6] — 0% = ——— [(v = (s = )52 +

62 —62)| — 02 =02+ 62—62—02=0
E(63) - of = E [P0 — o = 1[s(ag)] - 0§ = 0

E(&f)—aA—E[jiz—aé—ae] of = —E[SS,] - E[62 + 62] — o}
(s—l)( )—0/1 =0

Theorem 2: The variance of maximum likelihood estimators are biased.

var(67) = var( SSe ) _wvar(sS.)  _ w+s)(1-wog _ o
e) — a-w(w+s)) ((1—u)(v+s))2 ((1—u)(v+5))2 ERTEES|
52) = _SSeam 52 _ _PSoam) >

vaT(UqJ) = var ((v—l)(s—1) e) = ((v—l)(s—l))2 + var(ae)

_ w-1)(s-1Do? o8 _ [ n 104

T (w-D6-D) T A-w@+s) T Le-D6-1) T a-w+s)] ¢
2

A2\ _ SSg—G4—65\ _ var(SSg—65—65) 1 (sob+a5+03+02)
var(ag) = var( S ) = 2 == — +

1 1 4
((v—l)(s—l) + (1—u)(v+s)) Uel
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~2 (SSy/s—-1)-6%-5% vz(zsrﬁ.)?g)_l_var(a(p_ag) v?(pos +a<p+ag)
var(67) = var( . ) = — = — +
v? v? 4
((v—l)(s—l) + (1—u)(v+s)) Te
Maximum Penalized Likelihood Estimators
The maximum penalized likelihood function can be written as follows:
L=V +p(o},0%,02,0%) ©)
"the penalized logarithm-likelihood function can be written as follows:"
In(L) = L(¥) + Inp( 0§, 07, 03,02) (10)
where

L(¥) the logarithm-likelihood and In p( 64, of, 03,0Z) the penalty term.

The logarithm-likelihood for the Bayesian prior density is used to calculate the added penalty.
Tiao and Tan (1965) supposed about the prior distribution for g, ag,af,ag,,ag as follows:
[21]

1
02(sa5+05+02) (Vo5 +05+03)(05+0F)

InL(¥) = — %[npq In2m) + (1 —w) (@ + s)In(62) + (v — D In(so§ + o +
2) + (s — Din(vaf + 02 + aez) + (v —1D(s — Din(oz + ) + v(u - 1)ln(sa§ +of +
a(p + ae) +s(u—1) ln(o*e + voi + a(p + o*ez) +vs(u — 1)ln(09 + o7 + % + ae) +

SS SS SS SS SS
In(s0F +vof + 05+ 0Z) + S+t S
e so05+0ptoe voy+o,tog 0p+0¢ sogtoytogtog

p(05,07,04,08) (11)

Ss SS, wvs(F — )2
et e g |~ In(0d) ~ In(s0p + 0 + 02) — In(vay +
2 2 2 2

o, +05) —In(og + 0f) (12)

we will maximize the equation (12) with respectto (62), (0 + 02), (so§ + o2 +
02) and (vof + o2 + o), equal to zero, we have that

dLn L(W¥) 1[(1-u)(v+s) SS SS,
e i It e (13
onLW) _ 1 l(v—n(s—n SSexn 1 l “ o
6(a<p+ae) 2| oj+0l (g(p+0‘e) 05+0%
A2 _ szxn_&g[(v_l)(s—l)‘l'l] (14)
¢ (w-1)(s-1)+1
dLn L(W¥) _ 1 (v-1) sSSg 1 _
6(sae+a<p+ae) ) S05+045+04 - (505+U¢+09) so§+0§,+agl -
s8Sg—(s(u-1)+1)(62+5%
> 85 = —— (s([(u—)1)+)1g = (15)
JLn L(¥) _ 1 v(s—1) SSy 1 .
6(vol+a(p+oe) T2 lvo,%+a§,+a§ - (vo’l+0'<p+o'e) vaﬁ+0§,+a§l -
v(s—1) S8y 1 _
vaﬁ+a§,+a€ (vo’l+o'(p+o'e) va F+05+0%

Copyright The Author(s) 2023.This is an Open Access Article distributed under the CC BY
license. (http://creativecommons.org/licenses/by/4.0/) 33



http://journal.hmjournals.com/index.php/JECNAM
https://doi.org/10.55529/jecnam.33.28.39
http://creativecommons.org/licenses/by/4.0/

Journal of Electronics, Computer Networking and Applied Mathematics
ISSN: 2799-1156

Vol: 03, No. 03, April-May 2023
http://journal.nmjournals.com/index.php/JECNAM

DOI: https://doi.org/10.55529/jecnam.33.28.39

52 = SSp—[(s—1)+1]-(65+32)
9 = v[(s—1)+1]

(16)

Theorem 3: the maximum penalized likelihood estimators of variance components for model
(1) are biased.
Proof:

E(6}) — 02 = E (0t

W) ~ 8¢ = e FSSe) -
m (1 —w(v+5))62 — 62 E(a(p) — 02 =
el
(E[SSgxy] — (v — D(s — D)E[62]) — 0
= mE[SSEXn ~ 6] -0

2 A2 2
m[((v—l)(s—1)+1)( )—((v—l)(s—l))oe]—oq,
~2\ _ sSSg—(s(u—1)+1)(63+52) o _ SE[SSel- (s(u-1)+1)(E[63+5E])
E(GG) 09 - E[ s[s(u-1)+1] ] %9 = s[s(u-1)+1]
_ s(od+0d)-(s(u-1)+1)(E[65+62]) _ g2
- s[s(u=1)+1] 6

_ 1
T w-1D(s-1)+1

~ SSy=lv(s—1)+1]-(65+52) ~
B(57) ~ of = E [P i) = of = st £S5 ~ E[6F + 62]) = of

1
- viv(s — 1) + 1]E((s_ 1(o7) — E[65 +5e2]) —a}

Theorem 4: the variance of maximum penalized likelihood estimators as follows.
SSe ) _ var(SSe) _ (4s)A-wos (w+s)(1-w)og
1-WE+9)+1)  (1-w@+9)+1)"  (-w@+9)+1)° (1-w@+s)+1)
A2\ SSexn—06[(v=1)(s—1)+2] _ var(SS;xn)+[(v—l)(s—1)+2]var(8§)
var(85) = var( (-1 (s—1)+1 ) - (w-1)(s-1)+1)

N4
(-1 (s-1)od+[(v—1)(s—1)+1]p—LFDAWe
— (1-w(v+s)+1)

var(6?) = var(

(w-1)(s-1)+1)

A2\ s5Sg—(s(u—1)+1)(63+52) svar(sSg)+(s(u-1)+1)) var)(3-85) _
var(8g) = va ( Ss-D+1] ) SE—D+1]2
(509+Ul+a¢+09) +(s(u—-1)+1)2(x+y)
sZ s[s(u-1)+1]2

where x = var(62) and y = var(62)

A2\ SSp—[v(s—1)+1](63+562) _ var(SSn)+[v(s—1)+1]2var(a¢,—ae)
var(67) = var( vv(s—1)+1] ) - v[v(s—1)+1]
(po'/1+o'(p+0'£) +[(s—1D)+1]%(x+y)

v[(s—-1)+1]

where x = var(62) andy = var(a(p)

Difference between Variance Components Estimators
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The next theorem has been used to demonstrate the link among variance component
estimators and compare these estimators employing mean square error.

Theorem 5: The mean square error of variance components of model (1) are as follows:
MSE(624,) < MSE(62ypL),

MSE (62 .) < MSE(63upL),

MSE (6§ y1) < MSE(6§ yp1,) and

MSE(61) < MSE (6.

Poof:

_ (v+s)(1—-u)ds 1 _
MSE(m) = Gmpars < MSE(62mp.) = (G—wwrs)? ((1—u)(v+s)+1 (@ -0+
2
)52 - 62)’,
1

A~ 1 A
MSE(62,,) = [ — st (M)] 0% < MSE(82yp,) =

(v+s)(1-u)os

(v—1)(5—1)a§+[(v—l)(s—1)+1]v(( o)’
1-w)(w+s)+1 ~2 | A2
(w-1)(s-1)+1)° + ((v DG-1)+1 (=D —1) +1)(85 +62) -

(v -1(s - D)e?| - 62),

1 (saé+aﬁ+a§,+a§)2 1 1
MSE(UQ ML) = 3z + ( + ) = MSE(UB mpL) =

s2 v(u—1) (w-1)(s-1) (@@A-u)(w+s)
2

(s03+02+02+02) +(s(u-1)+1)2(x+y) + (s(ag,mg)—(s(u—1)+1)(E[a¢+ae]) _ 02)
s[s(u-1)+1]2 sls(u-1)+1] 0

(voi+o +O‘e) 1 1 ~ —
MSE (67m1) = A(s 4,1) + ((v—l)(s—l) + (1—u)(v+s)) 0f < MSE(87yp,) =

(voi+ai+o ) +[v(s—1)+1]%(x+y) 1 2
— e[U(S 1+1] + (v[v(s—1)+1]E([SS77] [O-<P + 0-62]) - 0-/1) .

The Practical Side

In this section we chose an experiment to demonstrate the practical side of the methods used
in our study.

The data set was taken from an experiment conducted in a private orchard in Abu Al-Khasib
in Basra governorate during the two agricultural seasons 2018 and 2019 in order to study the
effect of the season, plant variety, levels of sculpture, two levels of superphosphate and levels
of soil leaching process on the height of two lettuce cultivars grown in highly saline soils,[1].
We take the data set from an experiment conducted in a private orchard in Abi Al-Khasib,
Basrah Province, during the two agricultural seasons 2018 and 2019. The purpose of our
application is to examine the effect of season, plant variety, different levels of sculpture as
well as two different levels of superphosphate and levels of soil leaching process on the
height of lettuce plants grown in highly saline environment. The experiment included 360
variable treatments, namely the season, two types of plants (Fajer and local), sulphur at levels
0, 500, 1000, 1500 and 2000 mm, superphosphate at levels of 200 and 400 mm, and levels of
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soil washing process. The experiment was designed according to the analysis of variance of
the repeated measurements model. As shown in the ANOVA table (2).

Table (2): the ANOVA table of repeated measurements model

Source of variance D.F. SS MS F-Test
Season 1 116.463 116.463 183.482
Cultivar 1 76.176 76.176 120.012

Season X Cultivar 1 29.722 29.722 46.825
Sulpher 4 4057.859 1014.456 1598.242
Superphosphate 1 350.069 350.069 551.518
Soil Washing 2 236.524 118.189 186.201
Residual 349 221.524 0.634
Total 359 5088.191

The maximum likelihood estimators of variance components as follows:
85 = 85.471,6; = 45.184,63 = 29.087 and 67 = 0.634,
MSE(62,4,,) = 0.00037

MSE(62,,) = 0.1328

MSE (6§ 1) = 10471.0912 and

MSE(67y,) = 1782.

The maximum penalized likelihood estimators of variance components as follows:
65 = 2009.471,6; = 59.315,62 = 14.499 and 62 = 0.632.

MSE(62yp,) = 0.001

MSE (62 yp.) = 49.998225

MSE (6§ yp1,) = 401452.322 and

MSE (67 yp,) = 342167.876.

We see that the value of maximum likelihood estimators and man square error of variance
components less than the mean square error and maximum penalized likelihood estimators of
variance components. This corresponds to the theoretical side of this work.

2. CONCLUSIONS

The following are the conclusions that were reached during this paper:
(a) The maximum likelihood estimator of variance components as follows:

62 =—2¢ = MS, = 0.634,

€ T (1-w(v+s)

~A2 szxn a2 3 3
To = w-1)(s-1) O = MSExn MS; = 29.087 ,
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67 = £07%7% _ MMM _ g5 471 and

87 = (ssn/s 1v) 04=0% _ MSy=MSgxn=MSg _ 45184 |

a) The maximum likelihood estimators of variance components are unbiased as follows:

E(@6}) -062=0,E(6 )—05=O,E(6§)—a§=0andE(6f)—af=0.

(b) The maX|mum likelihood estimators of variance components are biased as follows.

var(6¢) = (- u)(v+s)
A2\ _ 1 4
var(63) = [(v De-1 T a- u)(v+s)] %e
A2 1 (50'9+0')1+0'(p+0'e) 1 1
var(64) = v(u-1) ((v—l)(s—l) (- u)(v+s)) land
~2 v (pcr,1+cr(p+cr£) v2 v? 4
var(67) = (s-1) + ((v—l)(s—l) (1—u)(v+S))

(c) The maximum penalized likelihood estimators of variance components as follows:
52 = — > — (632

A-w@+s)+1 '
~2 szxn_ag[(v_l)(s_l)"‘l]
- (w-1(s—-1)+1
~2 _ SSSg=(s(u-1)+1)(65+8Z)

= 14.499,

6g = 2009.471 and
s[(wv-1)+1]

~2 _ SSy=l(s-1)+1]-(85+3Z) _

0y = SlG-D1] = 59.315.

(d) The maximum penalized likelihood estimators of variance components for model (1) are
biased.

A2Y o _ A2 A2
E(62) — o2 = . u)(v+s)+1 (( u)(v+s))ae 6s ,

E(6%) -0} = —(v oD [(v=1D(s—-1D+1)(62+623) - ((v—1D(s—1))62] — 02,
. s(od+02)—(s(u-1)+1)(E[65+563])
E(65) —of =—* TR — 04 and

E(67) —of = mE((S— 1)(o7) —E[éqz, +632]) —of.

(e) The variance of maximum penalized likelihood estimators as follows:
(v+s)(1-u)os
(1—w)(w+s)+1)"

-1 (s-1)ot+[(v-1)(s—-1)+1]v

~2 ((1—1.L)(17+s)+1)2
var = ’
(65) (w-1)(s-1)+1)

_ (509+al+0¢+de) +(s(u-1)+1)2(x+y)
var(68) = D and

var(62) =

(v+s)(1—u)o‘e‘
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var(67) = (

pa§+aé+o§)2+us—1)+1ﬁ(x+y)
v[(s—1)+1]

where x = var(62) and y = var(62)

(F) The mean square error of variance components of model (1) are as follows:
MSE(62,,) = 0.00037 < MSE(62,p,) = 0.001,

MSE(62,) = 0.328 < MSE(62 yp1,) = 49.998,

MSE (6§ y1,) = 10471.091 < MSE(65 yp) = 401452.322 and
MSE(67y,) = 1782 < MSE (67 yp,) = 342167.876.

We see that the value of maximum likelihood estimators and man square error of variance
components less than the mean square error and maximum penalized likelihood estimators of
variance components. This corresponds to the theoretical side of this work.
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