
Journal of Electronics, Computer Networking and Applied Mathematics 

ISSN: 2799-1156  

Vol: 03, No. 05, Aug-Sept 2023 

http://journal.hmjournals.com/index.php/JECNAM 

DOI: https://doi.org/10.55529/jecnam.35.28.35 

 

 

 

 

Copyright The Author(s) 2023.This is an Open Access Article distributed under the CC BY 

license. (http://creativecommons.org/licenses/by/4.0/)                                                            28  

 
 

Generalized Supplemented Semimodules 
 

 
 

Hayder Sh. Khareeba1*, Ahmed H. Alwan2 
 

1*,2Department of Mathematics, College of Education for Pure Sciences," University of Thi-

Qar, Thi-Qar, Iraq 

 

Email: 2ahmedha_math@utq.edu.iq  

Corresponding Email: 1*hayder.shaalan.math@utq.edu.iq  

 

Received: 02 April 2023            Accepted: 18 June 2023             Published:  01 August 2023 

 

Abstract: In this work generalized supplemented semimodules are defined which generalize 

generalized supplemented modules. We investigate some properties of these semimodules. 

We show that the finite sum of GS-semimodules is GS-semimodule. We also define WGS-

semimodules and proved that a semiring 𝑺 is semilocal if and only if every finitely generated 

semimodule is a WGS-semimodule. Furthermore, we prove that if 𝑨 be a semimodule as well 

as 𝑹𝒂𝒅(𝑨) ≪ 𝑨. Then 𝑨 is a WGS-semimodule if and only if 𝑨/𝑹𝒂𝒅(𝑨) is semisimple. 

 

Keywords: Generalized Supplemented Semimodule, Subtractive Semimodule, Lifting 

Semimodule. 

 

1. INTRODUCTION 

 

In 2006, Wang and Dang [11] defined generalized supplemented module. In this paper, we first 

introduce the concept of generalized supplemented semimodules. Firstly, let use point that, S 

shalt indicate an associtione semiring with neutrai and A shalt indicate an unitary left S-

semimodule throughout this article. A (left) S-semimodule A is commutative additive 

semigroup with zero elements 0A, jointly with a mapping from S × A into A (sending (s, a) to 

sa) such that (r + s)a = ra + rs, r(a + b) = ra + rb, r(sa) = (rs)a and 0a = s0a = 0 for all 

a, b ∈ A and r, s ∈ S. Let N be sub set of A. We say that N is an S-subsemimodule of A, denoted 

by N ≤ A, if and only if N is itself an S-semimodule with respect to the process for A [6]. A 

subsemimodule N ≤ A is called essential in A, denoted by N ≤e A (or N ≤e A), if N ∩ L ≠ 0 

for every non-zero subsemimodule L ≤ A [9]. A subsemimodule N ≤ A is said to be small or 

superfluous in A (writes N ≪ A), if for every subsemimodule K ≤ A with N + K = A assume 

that K = A [10]. The radical of S-semimodule A, signified by Rad(A), is the sum of all small 

subsemimodules of A [10]. A is said to be hollow, if all proper subsemimodules of A are small 

in A. A is called local if it contains the maximal single subsemimodule, the correct 

subsemimodule that contains all other subsemimodules. A is called simple if it has no nontrivial 
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subsemimodules, and semisimple if A is a direct sum of its simple subsemimodules [8]. A 

semiring S is named semilocal semiring if S/Rad(S) is semisimple. The socle of A meaning 

Soc(A), is the sum of all simple subsemimodules of A [8]. Let U,K ≤ A. K is called a 

supplement of U in A if it is minimal with respect to A = U + K. A subsemimodule K of A  is 

a supplement from U in A if and only if A = U + K and U ∩ K ≪ K [3]. A is supplemented if 

each subsemimodule U of A has a supplement in A. U ≤ A has ample supplements in A if each 

subsemimodules of A such that A = U + K contains a supplement of U in A. A semimodule A 

is called amply supplemented if every subsemimodule from A  has ample supplements in A. 

Hollow semimodules are amply supplemented [3]. U ≤ A is a subtractive subsemimodule of A 

if a, a + b ∈ U then b ∈ U [8]. If every U ≤ A is a subtractive, then A is named subtractive. If 

C is a subtractive subsemimodule, then A/C is an S-semimodule [6, p.165]. Section 2 is devoted 

to various properties of generalized supplement subsemimodules. We prove that if and only if 

A is a GAS-semimodule, then A is Artinian and confirms that DCC generalized to smaller 

subsemimodules. It is proved so as to every finite sum of GS-semimodule. In secation 3, we 

define WGS- semimodule. It is proved that S is semilocal iff each cyclic semimodule is a WGS-

semimodule. 

 

Lemma 1.1: Let A be a semimodule and V a supplement subsemimodule of A. Then Rad(V) =
V ∩ Rad(A). 

 

𝐏𝐫𝐨𝐨𝐟: Assume V to be a supplement of U ≤ A. Let K ≪ A and Y ≤ V with (K ∩ V) + Y = V. 

The Then A = U + V = U + (K ∩ V) + Y = U + Y, and so Y = V, i.e., K ∩ V ≪ V. This yields 

V ∩ Rad(A) ≤ Rad(V), since Rad(V) ≤ V ∩ Rad(A) , we have Rad(V) = V ∩ Rad(A). □ 

 

In [6], [8] if A is a semimodule, then A represent Artinian if any non-empty set on 

subsemimodules of A contains minimal member in ration to setting inclusion. For present 

definition is equivalent to descending chain condition on subsemimodules of A.  

 

Theorem 1.2: Take A a S-semimodule. If and only if A fulfills (DCC) on a small submodule, 

Rad(A) is then Artinian. 

Proof: It is essentially the same as that of Theorem 5 in [2]. □ 

 

Proposition 1.3: [11, Proposition 14.22] (Semimodularity Law) Let A be an S-semimodule and 

let Nt and Nr be subsemimodules of A. Let F be a subtractive subsemimodule of A with Nt ≤
F. Then F ∩ (Nt + Nr) = Nt + (F ∩ Nr).  

                                                                                                  

2. GS-semimodules and GAS-Semimodules 

Definition 2.1: Let A be an S-semimodule and F, B ≤ A. If A = F + B and F ∩ B ≤ Rad(B), 

then B is said to be a generalized supplement of F in A. If all subsemimodule of A has a 

generalized supplement in A, then A is named generalized supplemented semimodule or simply 

a GS-semimodule.  

 

Definition 2.2: An S-semimodule A is said to be a generalized amply supplemented 

semimodule or simply a GAS-semimodule when A = F + B (mean that F has generalized 
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supplement F′ ≤ B). F is named a generalized supplement subsemimodule when F is a 

generalized supplement of some subsemimodule of A.  

 

Remark 2.3: (1) Evidentially, all supplement is generalized supplement. Therefore, all 

supplemented semimodules are generalized supplemented. But the reverse include is incorrect. 

For instance, the Z-semimodule Q. Since Rad(Q) = Q. While Q is not supplemented using 

example [5, 20.12].  

 

(2) (Amply) supplemented semimodules and hollow semimodules are GS-semimodules. Let 

S = N be a semiring of non-negative integers, and A = N8 =
N

8N
. Then the semimodules S and 

A over a semiring S are local (hollow) semimodules and so are GS-semimodules. 

The next can be thought of as a generalization of [4, Example 7.5]  

 

Example 2.4: Let S be a Dedekind semidomain of the quotient semifield K ≠ S. The S-

semimodule A = K(Γ)is generalized supplemented for all index Γ. If S is (a local Dedekind) 

semidomain, then A is supplemented only when Γ is finite. If S is a non-local Dedekind 

semidomain, as well A not supplemented for each index set Γ, because A not torsion, i.e., 

Rad(A) ≠ A. 

 

Proposition 2.5: Take A be a GS-semimodule and N a subtractive subsemimodule of A such 

that N ∩ Rad(A) = 0.  As well N is semisimple. Exclusively, a GS-semimodule A to Rad(A) =
0 is semisimple. 

𝐏𝐫𝐨𝐨𝐟: Let N1 ≤ N. There exists N2 ≤ A with N1 + N2 = M, N1 ∩ N2 ≤ Rad(N2). So N =
N ∩ A = N ∩ (N1 + N2) = N1 + (N ∩ N2), by Proposition 1.3. Since N1 ∩ N2 ≤ Rad (N2) 

and N1 ∩ N ∩ N2 = N1 ∩ N2 ≤ N ∩ Rad (N2) ≤ N ∩ Rad(A) = 0, N = N1 ⊕ (N ∩ N2). So 

that N would be is semisimple. □ 

 

Proposition 2.6: Take A subtractive GAS-semimodule also take Fdirect summand of A. As 

well F would be GAS-semimodule. 

𝐏𝐫𝐨𝐨𝐟: There exists F′ ≤  A with A = F ⨁ F′. Assume F = B + H, then A = H + (B ⊕ F′). 

Since A is a GAS-semimodule, there exists K ≤ Hwith A = K + (C ⊕ F′) and K ∩ (B ⊕ F′) ≤

Rad(K). So F = F ∩ A = F ∩ (K + (B ⊕ F′)) = K + B, K ∩ B = K ∩ (B ⊕ F′) ≤ Rad(K), 

This proves the claime. □ 

 

Proposition 2.7: Let A be a subtractive GS-semimodule. Then A = F ⊕ B to some semisimple 

F also some B with essential radical. 

𝐏𝐫𝐨𝐨𝐟: It is similar to the proof of Proposition 2.3 in [11]. □ 

 

Proposition 2.8: Let A1, U ≤ A and A1
 be a GS-semimodule. If A1 + U contains a generalized 

supplement in A, furthermore U. 

𝐏𝐫𝐨𝐨𝐟: There exists Nt ≤ A with Nt + (A1 + U) = A, Nt ∩ (A1 + U) ≤ Rad (Nt). There 

exists Nk ≤ A1 with (Nt + U) ∩ A1 + Nk = A1, (Nt + U) ∩ Nk ≤ Rad(Nk). So we have Nt +
U + Nr = A and (Nt + U) ∩ Nr ≤ Rad(Nr). It is sure that (Nt + Nr) + U = A. Since Nr + U ≤
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 A1 + U, Nt ∩ (Nr + U) ≤ Nt ∩ (A1 + U) ≤ Rad(Nt). Hence (Nt + Nr) ∩ U ≤ Nt ∩ (Nr + U) 

+ Nr ∩ (Nt + U) ≤ Rad(Nt) + Rad(Nr) ≤ Rad(Nt + Nr). So, Nt + Nr be generalized 

supplement of U in A. □ 

 

Proposition 2.9: Let A1and A2 be GS-semimodules. If A = A1 + A2, then A is a GS-

semimodule. 

𝐏𝐫𝐨𝐨𝐟: Let U ≤ A. Since A = A1 + A2 + U trivially contains a generalized supplement in A, 

A2 + U contains a generalized supplement in A using Proposition 2.8. Then also U using 

Proposition 2.8. □ 

 

Theorem 2.10: If A is a GS-semimodule, then A/Rad(A) is semisimple. 

𝐏𝐫𝐨𝐨𝐟: Let Nt ≤ A with Rad(A) ≤ Nt. Then A = Nt + Nk and Nt ∩ Nk ≤ Rad (A) for some 

Nk ≤ A. So A/Rad(A) = Nt/Rad(A) ⊕ (Nk + Rad(A))/Rad(A), as well as all 

subsemimodule of A/Rad(A) is a direct summand. □ 

 

Definition 2.11: A subsemimodule F of A is said to have generalized ample supplements in A 

if for all H ≤ A with F + H = A, F has a generalized supplement in H. 

 

Proposition 2.12: If A = A1 + A2, and A1, A2 have generalized ample supplements in A, then 

A1 ∩ A2 also has generalized ample supplements in A. 

 

Theorem 2.13: The next are equivalent for a subtractive semimodule A with B ≤ A. 

(1) There is a decomposition A = F ⊕ F′ with F ≤ B and F′ ∩ B ≤ Rad(F′). 

(2) There is a direct summand Fof A with F ≤ B and B/F ≤ Rad(A/F). 

(3) B has a generalized supplement H in A with H ∩ B is a direct summand of B. 

 

𝐏𝐫𝐨𝐨𝐟:  (1) ⟹ (2) Using the subtractiveness of F, we have A/F is a semimodule. B/F ≅ F′ ∩
B ≤ Rad(F′) ≅ Rad(A/F). So A = F ⊕ F′ and B/F ≤ Rad(A/F). 

(2) ⟹ (1) If A = F ⊕ F′ and  B/F ≤ Rad(A/F), then B = F + (F′ ∩ B), F′ ∩ B ≅
B

F
≤

Rad (
A

F
) ≤ A/F ≅ F′, consequently F′ ∩ B ≤ Rad(F′). 

 

(1) ⟹ (3) By hypothesis, F′ the generalized supplement of B in A and B = F ⊕ (F′ ∩ B).  

(3) ⟹ (1) Take H be a generalized supplement of B. Let B = F ⊕ (H ∩  B). Then A = B +
H = F + (H ∩ B) + H = F + Hand F ∩ H = (F ∩ B) ∩ H = F ∩ (H ∩ B) = 0 (for F ≤ B), i.e. 

F is a direct summand of A. □ 

 

Proposition 2.14: If each subsemimodule of A is a GS-semimodule, then A is a GAS-

semimodule. 

𝐏𝐫𝐨𝐨𝐟: Let F, B ≤ A as well as A = B + F. There is H ≤ F with F ∩ B + H = F, (F ∩ B) ∩ H =
B ∩ H ≤ Rad(H). So, H + (F ∩ B) = F ≤ H + B, so B + F = A ≤ H + B. A = H + B. □ 

 

Corollary 2.15: The next are equivalent, for a semiring S.  

(1) Each semimodule is a GAS-semimodule. 
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(2) Each semimodule is a GS-semimodule. 

 

Definition 2.16: [3] A semimodule 𝐴 is named 𝜋-projective if for any two subsemimodules 𝐹 

and 𝐵 of 𝐴 with 𝐴 = 𝐹 + 𝐵, there is 𝜑, 𝛾 ∈ 𝐸𝑛𝑑(𝐴) such that 𝜑 + 𝛾 = 1𝐴, 𝜑(𝐴) ≤ 𝐹 and 

𝛾(𝐴) ≤ 𝐵. 
 

Theorem 2.17: If 𝐴 is a subtractive 𝜋-projective GS-semimodule, we get 𝐴 is a GAS-

semimodule.    

 𝐏𝐫𝐨𝐨𝐟: Similar to the proof of theorem 3.16 in [3]. □ 

 

Theorem 2.18: 𝐴 is Artinian if and only if 𝐴 is a GAS-semimodule as well as fulfills (DCC) 

on generalized supplement subsemimodules with on small subsemimodules.  

𝐏𝐫𝐨𝐨𝐟: The first trend obviously. Reverse direction, assume 𝐴 GAS satisfies (DCC). Thus 

𝑅𝑎𝑑(𝐴) is Artinian by Theorem 1.2. Let 𝐹 ≤ 𝐴 and 𝑅𝑎𝑑(𝐴) ≤ 𝐹. There is a generalized 

supplement 𝐻 of 𝐹 in 𝐴, i.e., 𝐴 = 𝐹 + 𝐻, 𝐹 ∩ 𝐻 ≤ 𝑅𝑎𝑑(𝐻) ≤ 𝑅𝑎𝑑(𝐴). So [
𝐴

𝑅𝑎𝑑(𝐴)
=

 (𝐹/𝑅𝑎𝑑(𝐴)) ⊕ ((𝐻 + 𝑅𝑎𝑑(𝐴))/𝑅𝑎𝑑(𝐴))]. 𝐴/𝑅𝑎𝑑(𝐴) is semisimple. 

 

Now assume 𝑅𝑎𝑑(𝐴) ≤ 𝐹1 ≤ 𝐹2 ≤ 𝐹3 ≤··· represent ascending chain of subsemimodules of 

𝐴. Since 𝐴 is a GAS-semimodule, we can find a descending chain of subsemimodules 𝐻1 ≥
𝐻2 ≥··· together with 𝐻𝑖 is a generalized supplement of 𝐹𝑖 in 𝐴 to all 𝑖 ≥ 1. By assumption, 

there is positive integer 𝑟 together with 𝐻𝑟 = 𝐻𝑟+1 = 𝐻𝑟+2 = ⋯. Since 𝐴/𝑅𝑎𝑑(𝐴) =
𝐹𝑖/𝑅𝑎𝑑(𝐴) ⊕ (𝐻𝑖 + 𝑅𝑎𝑑(𝐴))/𝑅𝑎𝑑(𝐴) for all 𝑖 ≥ 𝑟, it follows that 𝐹𝑟 = 𝐹𝑟+1 = ⋯. From 

now,  
𝐴

𝑅𝑎𝑑(𝐴)
 is Noetherian, so finitely generated. Therefore 𝐴/𝑅𝑎𝑑(𝐴) is Artinian, □ 

 

Corollary 2.19: If 𝐴 is finitely generated GAS-semimodule. Then 𝐴 is Artinian iff 𝐴 fulfills 

(DCC) on small subsemimodules.  

𝐏𝐫𝐨𝐨𝐟: “⟹” is clear. 

“⟸” As 𝐴/𝑅𝑎𝑑(𝐴) is semisimple and 𝐴 is finitely generated, so 𝐴/𝑅𝑎𝑑(𝐴) is Artinian. Since 

𝐴 fuifills (DCC) on small subsemimodules, 𝑅𝑎𝑑(𝐴) is Artinian using Theorem 1.2. Therefore, 

𝐴 is Artinian. □ 

 

Definition 2.20: [9] A semimodule 𝐴 is called a lifting semimodule if for every subsemimodule 

𝐹 ≤ 𝐴 of 𝐴 there exist subsemimodules 𝐻, 𝐻′ for 𝐴 as well as 𝐴 = 𝐻 ⊕ 𝐻′, 𝐻 ≤ 𝐹 and 𝐹 ∩
𝐻′ ≪ 𝐻′. 

 

Definition 2.21: [9] Let 𝐴 be a subtractive semimodule. Then 𝐴 is said to be a lifting 

semimodule, if for every subsemimodule 𝐹 ≤ 𝐴, there is a direct summand 𝐻 of 𝐴 and 𝐻 ≤ 𝐴 

as well as 
𝐹

𝐻
≪

𝐴

𝐻
. 

 

Theorem 2.22: If 𝐴 be a subtractive semimodule as well as (ACC) on small subsemimodules. 

then, 𝐴 is a GAS-semimodule as well as each generalized supplement is a direct summand of 

𝐴 if and only if 𝐴 is lifting semimodule. 
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𝐏𝐫𝐨𝐨𝐟: (⟹) Let 𝐴 = 𝐹 + 𝐻. There is 𝐵 ≤ 𝐻 with 𝐴 = 𝐹 + 𝐵 and 𝐹 ∩ 𝐵 ≤ 𝑅𝑎𝑑(𝐵). Since 𝐴 

together with (ACC) on small subtractive subsemimodules, 𝑅𝑎𝑑(𝐵) is Noetherian by [2]. So 

𝑅𝑎𝑑(𝐵) ≪ 𝐵 by [7, Coro. 9.1.3], as well as 𝐵 is a supplement of 𝐹. So 𝐴 is amply 

supplemented. For any supplement is generalized supplement, any supplement is direct 

summand. 𝐴 is lifting. 

 

(⟸) Because 𝐴 is lifting, 𝐴 is an amply supplemented, from now 𝐴 is a GAS-semimodule. 

Assume 𝐹 be a generalized supplement, i.e., there is 𝐻 ≤ 𝐴 therefore 𝐴 = 𝐹 + 𝐻 while 𝐹 ∩
𝐻 ≤ 𝑅𝑎𝑑(𝐹). With similar evidence from those of (⟹), we are aware of that 𝐹 is a supplement 

of 𝐻. Thus 𝐻 is a direct summand of 𝐴, this proves the claime. □ 

 

Remark 2.23: Let 𝐴 be a GS-semimodule and 𝑅𝑎𝑑(𝐴) be Noetherian. Then 𝐴 is a 

supplemented semimodule.       

                                                                                                                                                                                                                                                                                                                                                                        

3. WGS-semimodules  

Definition 3.1: Let 𝐹, 𝐻 ≤ 𝐴. If 𝐴 = 𝐹 + 𝐻and 𝐹 ∩ 𝐻 ≪ 𝐴, then H is named a weak 

supplement of 𝐹 in 𝐴. If all subsemimodule of 𝐴 contains a weak supplement in 𝐴, then 𝐴 is 

named a weakly supplemented semimodule. 

 

Definition 3.2: A semimodule 𝐴 is called generalized weakly supplemented or abbreviation 

writes a WGS-semimodule if for each subsemimodule 𝐹 ≤ 𝐴, there is 𝐻 ≤ 𝐴 together with 

𝐴 = 𝐹 + 𝐻 and 𝐹 ∩ 𝐻 ≤ 𝑅𝑎𝑑(𝐴). 

 

Proposition 3.3: Take 𝐴 is a WGS-semimodule. Then. 

(1) Each supplement subsemimodule of 𝐴 is a WGS-semimodule. 

(2) Each factor semimodule of 𝐴 is a WGS-semimodule. 

 

𝐏𝐫𝐨𝐨𝐟: (1) Considered 𝐻 be a supplement in 𝐴. To all 𝐹 ≤ 𝐻, because 𝐴 is a WGS-

semimodule, there is 𝐵 ≤ 𝐴 with 𝐴 = 𝐹 + 𝐵, 𝐹 ∩ 𝐵 ≤ 𝑅𝑎𝑑(𝐴). Therefore 𝐻 = 𝐻 ∩ 𝐴 = 𝐻 ∩
(𝐹 + 𝐵) = 𝐹 + (𝐻 ∩ 𝐵) and 𝐹 ∩ (𝐻 ∩ 𝐵) = 𝐹 ∩ 𝐵 = 𝐻 ∩ (𝐹 ∩ 𝐵) ≤ 𝐻 ∩ 𝑅𝑎𝑑(𝐴) =
𝑅𝑎𝑑(𝐻) using Lemma 1.1. Hence 𝐻 is a GWS-semimodule. 

(2) Take 𝐵/𝐹 ≤ 𝐴/𝐹. For 𝐵 ≤ 𝐴, there is 𝐻 ≤ 𝐴 together with 𝐵 + 𝐻 = 𝐴 and 𝐻 ∩ 𝐵 ≤
𝑅𝑎𝑑(𝐴) since 𝐴 is a WGS-semimodule. So, 𝐴/𝐹 = 𝐵/𝐹 + (𝐻 + 𝐹)/F. Let 𝜑: 𝐴 → 𝐴/𝐹 be a 

canonical epic. Since 𝐻 ∩ 𝐵 ≤ 𝑅𝑎𝑑(𝐴), (𝐵/𝐹) ∩ ((𝐻 + 𝐹)/𝐹) = (𝐵 ∩ (𝐻 + 𝐹))/𝐹 = (𝐹 +
(𝐻 ∩ 𝐵))/𝐹 = 𝜑(𝐵 ∩ 𝐻) ≤ 𝜑(𝑅𝑎𝑑(𝐴)) ≤ 𝑅𝑎𝑑(𝐴/𝐹), 𝐴/𝐹 is a WGS-semimodule. □ 

 

Corollary 3.4: Take 𝐴 be a semimodule and 𝐹 ≪ 𝐴. Then 𝐴 is a WGS-semimodule if and only 

if 
𝐴

𝐹
 is a WGS-semimodule. 

 

Proposition 3.5: Take 𝐴 is finitely generated. Then 𝐴 is a WGS-semimodule if, and only if, 𝐴 

is weakly supplemented. 

𝐏𝐫𝐨𝐨𝐟: (⟸) It's simple. 
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(⟹) Suppose 𝑁𝑡 ≤ 𝐴, there exists 𝑁𝑟 ≤ 𝐴 with 𝑁𝑡 + 𝑁𝑟 = 𝐴 and 𝑁𝑡 ∩ 𝑁𝑟 ≤ 𝑅𝑎𝑑(𝐴) since 𝐴 

is a WGS-semimodule. Since 𝐴 is finitely generated, 𝑅𝑎𝑑(𝐴) ≪ 𝐴 [10]. Hence 𝑁𝑡 ∩ 𝑁𝑟 ≪ 𝐴.  

□ 

Lemma 3.6: Let 𝐻, 𝐴1 ≤ 𝐴 and 𝐴1 be a WGS-semimodule. If 𝐴1 + 𝐻 has a generalized weak 

supplement in 𝐴, also 𝐻. 

𝐏𝐫𝐨𝐨𝐟: Suppose 𝐹 ≤ 𝐴 will be (𝐴1 + 𝐻) + 𝐹 = 𝐴 and 𝐹 ∩ (𝐴1 + 𝐻) ≤ 𝑅𝑎𝑑(𝐴). Since 𝐴1 is 

a WGS-semimodule, there is a 𝐵 ≤ 𝐴1 together with 𝐴1 ∩ (𝐹 + 𝐻) + 𝐵 = 𝐴1 and 𝐵 ∩ (𝐹 +
 𝐻) ≤ 𝑅𝑎𝑑(𝐴1). Thus 𝐴 = 𝐻 + 𝐹 + 𝐵 and 𝐻 ∩ (𝐹 + 𝐵) ≤ (𝐻 + 𝐴1) ∩ 𝐹 + 𝐵 ∩ (𝐹 + 𝐻) ≤
𝑅𝑎𝑑(𝐴), that is, 𝐹 + 𝐵 is a generalized weak supplement of 𝐻 in 𝐴. □ 

 

Proposition 3.7: Suppose 𝐴 = 𝐴1 + 𝐴2. If 𝐴1, 𝐴2 are WGS-semimodules, then 𝐴 is a WGS-

semimodule. 

 

Theorem 3.8: Let 𝐴 be a semimodule as well as 𝑅𝑎𝑑(𝐴) ≪ 𝐴.Then the next are  equivalent.  

(1) 𝐴 is a WGS-semimodule.   

(2)
𝐴

𝑅𝑎𝑑(𝐴)
 is semisimple. 

(3) 𝐴 = 𝐴1 ⊕ 𝐴2 together with 𝐴1 is semisimple, 𝑅𝑎𝑑(𝐴) ≤𝑒 𝐴2 and 𝐴2/𝑅𝑎𝑑(𝐴) is 

semisimple. 

 

𝐏𝐫𝐨𝐨𝐟: (1) ⟹ (2) Let 𝐵 ≤ 𝐴 with 𝑅𝑎𝑑(𝐴) ≤ 𝐵. Since 𝐴 is a WGS-semimodule, there exists 

𝐹 ≤ 𝐴 with 𝐹 + 𝐵 = 𝐴 and 𝐹 ∩ 𝐵 ≤ 𝑅𝑎𝑑(𝐴). From now 
𝐴

𝑅𝑎𝑑(𝐴)
= 𝐵/𝑅𝑎𝑑(𝐴) +

(𝐹+𝑅𝑎𝑑(𝐴))

𝑅𝑎𝑑(𝐴)
 

and 
𝐵

𝑅𝑎𝑑(𝐴)
∩

(𝐹+𝑅𝑎𝑑(𝐴))

𝑅𝑎𝑑(𝐴)
= (𝐵 ∩ 𝐹 + 𝑅𝑎𝑑(𝐴))/𝑅𝑎𝑑(𝐴) = 0. 

(2) ⟹ (1) For any 𝐹 ≤ 𝐴, since 
𝐴

𝑅𝑎𝑑(𝐴)
 is semisimple, there is 𝐵 ≤ 𝐴 containing 𝑅𝑎𝑑(𝐴) as 

well as 
𝐴

𝑅𝑎𝑑(𝐴)
=

(𝐹+𝑅𝑎𝑑(𝐴))

𝑅𝑎𝑑(𝐴)
⊕ 

𝐵

𝑅𝑎𝑑(𝐴)
. Hence 𝐴 = 𝐹 + 𝑅a𝑑(𝐴 ) + 𝐵. Since 𝑅𝑎𝑑(𝐴) ≪ 𝐴, 𝐴 =

𝐹 + 𝐵. 𝐹 ∩ 𝐵 ≤ 𝑅𝑎𝑑(𝐴) is clear.  

(2) ⇔ (3) By [11, Theorem 3.8]. □ 

 

Theorem 3.9: The next are equivalent, for a semiring 𝑆. 

(1) 𝑆 is semilocal. 

(2) Each semimodule together with small radical is a WGS-semimodule.  

(3) Each finitely generated semimodule is a WGS-semimodule.  

(4) Each cyclic semimodule is a WGS-semimodule.  

 

𝐏𝐫𝐨𝐨𝐟: (1) ⟹ (2) Because every semimodule 𝐴 there is a set (𝛤) as well as an epimorphism 

𝜑 ∶ 𝑆(𝛤) ⟶ 𝐴 together with 𝜑(𝑅𝑎𝑑(𝑆(𝛤))) ≤ 𝑅𝑎𝑑(𝐴) and 
𝑆(𝛤)

𝑅𝑎𝑑(𝑆(𝛤))≅(𝑆/𝐽(𝑆))(𝛤)
, an 

epimorphism exists 𝜉 ∶ 𝑆(𝛤)/𝑅𝑎𝑑(𝑆(𝛤)) ⟶
𝐴

𝑅𝑎𝑑(𝐴)
. 

𝐴

𝑅𝑎𝑑(𝐴)
 is hence semisimple. and therefore 

𝐴 is a WGS-semimodule by applying Theorem 3.8. 

(2) ⟹ (3) ⟹ (4) the proof obviously. 
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(4) ⟹ (1) By Proposition 3.5, since a semiring 𝑆 is semilocal if and only if SS weakly 

supplemented.  □ 

 

Example 3.10: Let p and q be prime numbers and consider the semiring S = Zp,q =

{ 
x

y
  | x, y ∈ Z, y ≠ 0, p ∤ y and q ∤ y}, where S is a uniform semilocal Noetherian semidomain. 

Hence, SS is a WGS-semimodule by using  Theorem 3.8. Because SS is Noetherian, it together 

with (ACC) to small subsemimodules. If SS a GS-semimodule, SS is therefore a supplemented 

semimodule using Remark 2.23, this results in a note of contradiction in [1, Example 2. 17]. 
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