

Generalized Supplemented Semimodules

Hayder Sh. Khareeba^{1*}, Ahmed H. Alwan²

^{1*,2}Department of Mathematics, College of Education for Pure Sciences," University of Thi-Qar, Thi-Qar, Iraq

> Email: ²ahmedha_math@utq.edu.iq Corresponding Email: ^{1*}hayder.shaalan.math@utq.edu.iq

Received: 02 April 2023 Accepted: 18 June 2023 Published: 01 August 2023

Abstract: In this work generalized supplemented semimodules are defined which generalize generalized supplemented modules. We investigate some properties of these semimodules. We show that the finite sum of GS-semimodules is GS-semimodule. We also define WGS-semimodules and proved that a semiring S is semilocal if and only if every finitely generated semimodule is a WGS-semimodule. Furthermore, we prove that if A be a semimodule as well as Rad(A) \ll A. Then A is a WGS-semimodule if and only if A/Rad(A) is semisimple.

Keywords: Generalized Supplemented Semimodule, Subtractive Semimodule, Lifting Semimodule.

1. INTRODUCTION

In 2006, Wang and Dang [11] defined generalized supplemented module. In this paper, we first introduce the concept of generalized supplemented semimodules. Firstly, let use point that, S shalt indicate an associtione semiring with neutrai and A shalt indicate an unitary left S-semimodule throughout this article. A (left) S-semimodule A is commutative additive semigroup with zero elements 0_A , jointly with a mapping from $S \times A$ into A (sending (s, a) to sa) such that (r + s)a = ra + rs, r(a + b) = ra + rb, r(sa) = (rs)a and $0_a = s0_a = 0$ for all a, $b \in A$ and r, $s \in S$. Let N be sub set of A. We say that N is an S-subsemimodule of A, denoted by $N \leq A$, if and only if N is itself an S-semimodule with respect to the process for A [6]. A subsemimodule $N \leq A$ is called essential in A, denoted by $N \leq_e A$ (or $N \leq_e A$), if $N \cap L \neq 0$ for every non-zero subsemimodule $L \leq A$ [9]. A subsemimodule $N \leq A$ is said to be small or superfluous in A (writes $N \ll A$), if for every subsemimodule $K \leq A$ with N + K = A assume that K = A [10]. The radical of S-semimodule A, signified by Rad(A), is the sum of all small subsemimodules of A [10]. A is said to be hollow, if all proper subsemimodules, the correct subsemimodule that contains all other subsemimodules. A is called simple if it has no nontrivial

subsemimodules, and semisimple if A is a direct sum of its simple subsemimodules [8]. A semiring S is named semilocal semiring if S/Rad(S) is semisimple. The socle of A meaning Soc(A), is the sum of all simple subsemimodules of A [8]. Let $U, K \leq A$. K is called a supplement of U in A if it is minimal with respect to A = U + K. A subsemimodule K of A is a supplement from U in A if and only if A = U + K and $U \cap K \ll K$ [3]. A is supplemented if each subsemimodule U of A has a supplement in A. $U \le A$ has ample supplements in A if each subsemimodules of A such that A = U + K contains a supplement of U in A. A semimodule A is called amply supplemented if every subsemimodule from A has ample supplements in A. Hollow semimodules are amply supplemented [3]. $U \leq A$ is a subtractive subsemimodule of A if a, $a + b \in U$ then $b \in U$ [8]. If every $U \le A$ is a subtractive, then A is named subtractive. If C is a subtractive subsemimodule, then A/C is an S-semimodule [6, p.165]. Section 2 is devoted to various properties of generalized supplement subsemimodules. We prove that if and only if A is a GAS-semimodule, then A is Artinian and confirms that DCC generalized to smaller subsemimodules. It is proved so as to every finite sum of GS-semimodule. In secation 3, we define WGS- semimodule. It is proved that S is semilocal iff each cyclic semimodule is a WGSsemimodule.

Lemma 1.1: Let A be a semimodule and V a supplement subsemimodule of A. Then $Rad(V) = V \cap Rad(A)$.

Proof: Assume V to be a supplement of $U \le A$. Let $K \ll A$ and $Y \le V$ with $(K \cap V) + Y = V$. The Then $A = U + V = U + (K \cap V) + Y = U + Y$, and so Y = V, i.e., $K \cap V \ll V$. This yields $V \cap \text{Rad}(A) \le \text{Rad}(V)$, since $\text{Rad}(V) \le V \cap \text{Rad}(A)$, we have $\text{Rad}(V) = V \cap \text{Rad}(A)$. \Box

In [6], [8] if A is a semimodule, then A represent Artinian if any non-empty set on subsemimodules of A contains minimal member in ration to setting inclusion. For present definition is equivalent to descending chain condition on subsemimodules of A.

Theorem 1.2: Take A a S-semimodule. If and only if A fulfills (DCC) on a small submodule, Rad(A) is then Artinian.

Proof: It is essentially the same as that of Theorem 5 in [2]. \Box

Proposition 1.3: [11, Proposition 14.22] (Semimodularity Law) Let A be an S-semimodule and let N_t and N_r be subsemimodules of A. Let F be a subtractive subsemimodule of A with $N_t \leq F$. Then $F \cap (N_t + N_r) = N_t + (F \cap N_r)$.

2. GS-semimodules and GAS-Semimodules

Definition 2.1: Let A be an S-semimodule and F, $B \le A$. If A = F + B and $F \cap B \le Rad(B)$, then B is said to be a generalized supplement of F in A. If all subsemimodule of A has a generalized supplement in A, then A is named generalized supplemented semimodule or simply a GS-semimodule.

Definition 2.2: An S-semimodule A is said to be a generalized amply supplemented semimodule or simply a GAS-semimodule when A = F + B (mean that F has generalized

supplement $F' \leq B$). F is named a generalized supplement subsemimodule when F is a generalized supplement of some subsemimodule of A.

Remark 2.3: (1) Evidentially, all supplement is generalized supplement. Therefore, all supplemented semimodules are generalized supplemented. But the reverse include is incorrect. For instance, the Z-semimodule Q. Since Rad(Q) = Q. While Q is not supplemented using example [5, 20.12].

(2) (Amply) supplemented semimodules and hollow semimodules are GS-semimodules. Let S = N be a semiring of non-negative integers, and $A = N_8 = \frac{N}{8N}$. Then the semimodules S and A over a semiring S are local (hollow) semimodules and so are GS-semimodules. The next can be thought of as a generalization of [4, Example 7.5]

Example 2.4: Let S be a Dedekind semidomain of the quotient semifield $K \neq S$. The S-semimodule $A = K^{(\Gamma)}$ is generalized supplemented for all index Γ . If S is (a local Dedekind) semidomain, then A is supplemented only when Γ is finite. If S is a non-local Dedekind semidomain, as well A not supplemented for each index set Γ , because A not torsion, i.e., Rad(A) \neq A.

Proposition 2.5: Take A be a GS-semimodule and N a subtractive subsemimodule of A such that $N \cap Rad(A) = 0$. As well N is semisimple. Exclusively, a GS-semimodule A to Rad(A) = 0 is semisimple.

Proof: Let $N^1 \leq N$. There exists $N^2 \leq A$ with $N^1 + N^2 = M$, $N^1 \cap N^2 \leq \text{Rad}(N^2)$. So $N = N \cap A = N \cap (N^1 + N^2) = N^1 + (N \cap N^2)$, by Proposition 1.3. Since $N^1 \cap N^2 \leq \text{Rad}(N^2)$ and $N^1 \cap N \cap N^2 = N^1 \cap N^2 \leq N \cap \text{Rad}(N^2) \leq N \cap \text{Rad}(A) = 0$, $N = N^1 \bigoplus (N \cap N^2)$. So that N would be is semisimple. \Box

Proposition 2.6: Take A subtractive GAS-semimodule also take Fdirect summand of A. As well F would be GAS-semimodule.

Proof: There exists $F' \leq A$ with $A = F \oplus F'$. Assume F = B + H, then $A = H + (B \oplus F')$. Since A is a GAS-semimodule, there exists $K \leq H$ with $A = K + (C \oplus F')$ and $K \cap (B \oplus F') \leq Rad(K)$. So $F = F \cap A = F \cap (K + (B \oplus F')) = K + B$, $K \cap B = K \cap (B \oplus F') \leq Rad(K)$, This proves the claime. \Box

Proposition 2.7: Let A be a subtractive GS-semimodule. Then $A = F \bigoplus B$ to some semisimple F also some B with essential radical.

Proof: It is similar to the proof of Proposition 2.3 in [11]. \Box

Proposition 2.8: Let A_1 , $U \le A$ and A_1 be a GS-semimodule. If $A_1 + U$ contains a generalized supplement in A, furthermore U.

Proof: There exists $N_t \le A$ with $N_t + (A_1 + U) = A$, $N_t \cap (A_1 + U) \le Rad(N_t)$. There exists $N_k \le A_1$ with $(N_t + U) \cap A_1 + N_k = A_1$, $(N_t + U) \cap N_k \le Rad(N_k)$. So we have $N_t + U + N_r = A$ and $(N_t + U) \cap N_r \le Rad(N_r)$. It is sure that $(N_t + N_r) + U = A$. Since $N_r + U \le Rad(N_r)$.

 $\begin{array}{l} A_1 + U, N_t \cap (N_r + U) \leq N_t \cap (A_1 + U) \leq Rad(N_t). \mbox{ Hence } (N_t + N_r) \cap U \leq N_t \cap (N_r + U) \\ + \ N_r \cap (N_t + U) \leq Rad(N_t) + Rad(N_r) \leq Rad(N_t + N_r). \ \ \ So, \ \ N_t + N_r \ \ be \ \ generalized \ supplement \ of \ U \ in \ A. \ \Box \end{array}$

Proposition 2.9: Let A_1 and A_2 be GS-semimodules. If $A = A_1 + A_2$, then A is a GS-semimodule.

Proof: Let $U \le A$. Since $A = A_1 + A_2 + U$ trivially contains a generalized supplement in A, $A_2 + U$ contains a generalized supplement in A using Proposition 2.8. \Box

Theorem 2.10: If A is a GS-semimodule, then A/Rad(A) is semisimple. **Proof**: Let $N_t \leq A$ with Rad(A) $\leq N_t$. Then $A = N_t + N_k$ and $N_t \cap N_k \leq Rad$ (A) for some $N_k \leq A$. So A/Rad(A) = $N_t/Rad(A) \oplus (N_k + Rad(A))/Rad(A)$, as well as all subsemimodule of A/Rad(A) is a direct summand. \Box

Definition 2.11: A subsemimodule F of A is said to have generalized ample supplements in A if for all $H \le A$ with F + H = A, F has a generalized supplement in H.

Proposition 2.12: If $A = A_1 + A_2$, and A_1 , A_2 have generalized ample supplements in A, then $A_1 \cap A_2$ also has generalized ample supplements in A.

Theorem 2.13: The next are equivalent for a subtractive semimodule A with $B \le A$.

(1) There is a decomposition $A = F \bigoplus F'$ with $F \le B$ and $F' \cap B \le Rad(F')$.

(2) There is a direct summand Fof A with $F \le B$ and $B/F \le Rad(A/F)$.

(3) B has a generalized supplement H in A with $H \cap B$ is a direct summand of B.

Proof: (1) \Rightarrow (2) Using the subtractiveness of F, we have A/F is a semimodule. B/F \cong F' \cap B \leq Rad(F') \cong Rad(A/F). So A = F \oplus F' and B/F \leq Rad(A/F). (2) \Rightarrow (1) If A = F \oplus F' and B/F \leq Rad(A/F), then B = F + (F' \cap B), F' \cap B $\cong \frac{B}{F} \leq$ Rad $\left(\frac{A}{F}\right) \leq$ A/F \cong F', consequently F' \cap B \leq Rad(F').

(1) ⇒ (3) By hypothesis, F' the generalized supplement of B in A and B = F ⊕ (F' ∩ B). (3) ⇒ (1) Take H be a generalized supplement of B. Let B = F ⊕ (H ∩ B). Then A = B + H = F + (H ∩ B) + H = F + Hand F ∩ H = (F ∩ B) ∩ H = F ∩ (H ∩ B) = 0 (for F ≤ B), i.e. F is a direct summand of A. □

Proposition 2.14: If each subsemimodule of A is a GS-semimodule, then A is a GAS-semimodule.

Proof: Let F, B \leq A as well as A = B + F. There is H \leq F with F \cap B + H = F, (F \cap B) \cap H = B \cap H \leq Rad(H). So, H + (F \cap B) = F \leq H + B, so B + F = A \leq H + B. A = H + B. \Box

Corollary 2.15: The next are equivalent, for a semiring S.

(1) Each semimodule is a GAS-semimodule.

Copyright The Author(s) 2023. This is an Open Access Article distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/) 31

(2) Each semimodule is a GS-semimodule.

Definition 2.16: [3] A semimodule *A* is named π -projective if for any two subsemimodules *F* and *B* of *A* with A = F + B, there is $\varphi, \gamma \in End(A)$ such that $\varphi + \gamma = 1_A, \varphi(A) \leq F$ and $\gamma(A) \leq B$.

Theorem 2.17: If A is a subtractive π -projective GS-semimodule, we get A is a GAS-semimodule.

Proof: Similar to the proof of theorem 3.16 in [3]. \Box

Theorem 2.18: *A* is Artinian if and only if *A* is a GAS-semimodule as well as fulfills (DCC) on generalized supplement subsemimodules with on small subsemimodules.

Proof: The first trend obviously. Reverse direction, assume A GAS satisfies (DCC). Thus Rad(A) is Artinian by Theorem 1.2. Let $F \le A$ and $Rad(A) \le F$. There is a generalized supplement H of F in A, i.e., A = F + H, $F \cap H \le Rad(H) \le Rad(A)$. So $\left[\frac{A}{Rad(A)} = (F/Rad(A)) \bigoplus ((H + Rad(A))/Rad(A))\right]$. A/Rad(A) is semisimple.

Now assume $Rad(A) \leq F_1 \leq F_2 \leq F_3 \leq \cdots$ represent ascending chain of subsemimodules of *A*. Since *A* is a GAS-semimodule, we can find a descending chain of subsemimodules $H_1 \geq H_2 \geq \cdots$ together with H_i is a generalized supplement of F_i in *A* to all $i \geq 1$. By assumption, there is positive integer *r* together with $H_r = H_{r+1} = H_{r+2} = \cdots$. Since $A/Rad(A) = F_i/Rad(A) \oplus (H_i + Rad(A))/Rad(A)$ for all $i \geq r$, it follows that $F_r = F_{r+1} = \cdots$. From now, $\frac{A}{Rad(A)}$ is Noetherian, so finitely generated. Therefore A/Rad(A) is Artinian, \Box

Corollary 2.19: If *A* is finitely generated GAS-semimodule. Then *A* is Artinian iff *A* fulfills (DCC) on small subsemimodules.

Proof: " \Rightarrow " is clear.

" \Leftarrow " As A/Rad(A) is semisimple and A is finitely generated, so A/Rad(A) is Artinian. Since A fuifills (DCC) on small subsemimodules, Rad(A) is Artinian using Theorem 1.2. Therefore, A is Artinian. \Box

Definition 2.20: [9] A semimodule *A* is called a lifting semimodule if for every subsemimodule $F \le A$ of *A* there exist subsemimodules *H*, *H'* for *A* as well as $A = H \bigoplus H'$, $H \le F$ and $F \cap H' \ll H'$.

Definition 2.21: [9] Let A be a subtractive semimodule. Then A is said to be a lifting semimodule, if for every subsemimodule $F \le A$, there is a direct summand H of A and $H \le A$ as well as $\frac{F}{H} \ll \frac{A}{H}$.

Theorem 2.22: If *A* be a subtractive semimodule as well as (ACC) on small subsemimodules. then, *A* is a GAS-semimodule as well as each generalized supplement is a direct summand of *A* if and only if *A* is lifting semimodule.

Copyright The Author(s) 2023. This is an Open Access Article distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/) 32

Proof: (\Longrightarrow) Let A = F + H. There is $B \le H$ with A = F + B and $F \cap B \le Rad(B)$. Since A together with (ACC) on small subtractive subsemimodules, Rad(B) is Noetherian by [2]. So $Rad(B) \ll B$ by [7, Coro. 9.1.3], as well as B is a supplement of F. So A is amply supplemented. For any supplement is generalized supplement, any supplement is direct summand. A is lifting.

(\Leftarrow) Because *A* is lifting, *A* is an amply supplemented, from now *A* is a GAS-semimodule. Assume *F* be a generalized supplement, i.e., there is $H \le A$ therefore A = F + H while $F \cap H \le Rad(F)$. With similar evidence from those of (\Rightarrow), we are aware of that *F* is a supplement of *H*. Thus *H* is a direct summand of *A*, this proves the claime. \Box

Remark 2.23: Let A be a GS-semimodule and Rad(A) be Noetherian. Then A is a supplemented semimodule.

3. WGS-semimodules

Definition 3.1: Let F, $H \le A$. If A = F + H and $F \cap H \ll A$, then H is named a weak supplement of F in A. If all subsemimodule of A contains a weak supplement in A, then A is named a weakly supplemented semimodule.

Definition 3.2: A semimodule *A* is called generalized weakly supplemented or abbreviation writes a WGS-semimodule if for each subsemimodule $F \le A$, there is $H \le A$ together with A = F + H and $F \cap H \le Rad(A)$.

Proposition 3.3: Take *A* is a WGS-semimodule. Then.

(1) Each supplement subsemimodule of *A* is a WGS-semimodule.

(2) Each factor semimodule of *A* is a WGS-semimodule.

Proof: (1) Considered *H* be a supplement in *A*. To all $F \le H$, because *A* is a WGSsemimodule, there is $B \le A$ with A = F + B, $F \cap B \le Rad(A)$. Therefore $H = H \cap A = H \cap$ $(F + B) = F + (H \cap B)$ and $F \cap (H \cap B) = F \cap B = H \cap (F \cap B) \le H \cap Rad(A) =$ Rad(H) using Lemma 1.1. Hence *H* is a GWS-semimodule.

(2) Take $B/F \le A/F$. For $B \le A$, there is $H \le A$ together with B + H = A and $H \cap B \le Rad(A)$ since A is a WGS-semimodule. So, A/F = B/F + (H + F)/F. Let $\varphi: A \to A/F$ be a canonical epic. Since $H \cap B \le Rad(A)$, $(B/F) \cap ((H + F)/F) = (B \cap (H + F))/F = (F + (H \cap B))/F = \varphi(B \cap H) \le \varphi(Rad(A)) \le Rad(A/F)$, A/F is a WGS-semimodule. \Box

Corollary 3.4: Take *A* be a semimodule and $F \ll A$. Then *A* is a WGS-semimodule if and only if $\frac{A}{F}$ is a WGS-semimodule.

Proposition 3.5: Take *A* is finitely generated. Then *A* is a WGS-semimodule if, and only if, *A* is weakly supplemented. **Proof**: (\leftarrow) It's simple

Proof: (\Leftarrow) It's simple.

 (\Rightarrow) Suppose $N_t \leq A$, there exists $N_r \leq A$ with $N_t + N_r = A$ and $N_t \cap N_r \leq Rad(A)$ since A is a WGS-semimodule. Since A is finitely generated, $Rad(A) \ll A$ [10]. Hence $N_t \cap N_r \ll A$.

Lemma 3.6: Let $H, A_1 \leq A$ and A_1 be a WGS-semimodule. If $A_1 + H$ has a generalized weak supplement in A, also H.

Proof: Suppose $F \leq A$ will be $(A_1 + H) + F = A$ and $F \cap (A_1 + H) \leq Rad(A)$. Since A_1 is a WGS-semimodule, there is a $B \leq A_1$ together with $A_1 \cap (F + H) + B = A_1$ and $B \cap (F + H)$ $H \leq Rad(A_1)$. Thus A = H + F + B and $H \cap (F + B) \leq (H + A_1) \cap F + B \cap (F + H) \leq (H + A_1) \cap F$ Rad(A), that is, F + B is a generalized weak supplement of H in A. \Box

Proposition 3.7: Suppose $A = A_1 + A_2$. If A_1 , A_2 are WGS-semimodules, then A is a WGSsemimodule.

Theorem 3.8: Let A be a semimodule as well as $Rad(A) \ll A$. Then the next are equivalent. (1) A is a WGS-semimodule.

(2) $\frac{A}{Rad(A)}$ is semisimple.

(3) $A = A_1 \oplus A_2$ together with A_1 is semisimple, $Rad(A) \leq_e A_2$ and $A_2/Rad(A)$ is semisimple.

Proof: (1) \Rightarrow (2) Let $B \leq A$ with $Rad(A) \leq B$. Since A is a WGS-semimodule, there exists $F \leq A$ with F + B = A and $F \cap B \leq Rad(A)$. From now $\frac{A}{Rad(A)} = B/Rad(A) + \frac{(F + Rad(A))}{Rad(A)}$ and $\frac{B}{Rad(A)} \cap \frac{(F+Rad(A))}{Rad(A)} = (B \cap F + Rad(A))/Rad(A) = 0.$ (2) \Rightarrow (1) For any $F \leq A$, since $\frac{A}{Rad(A)}$ is semisimple, there is $B \leq A$ containing Rad(A) as well as $\frac{A}{Rad(A)} = \frac{(F+Rad(A))}{Rad(A)} \bigoplus \frac{B}{Rad(A)}$. Hence A = F + Rad(A) + B. Since $Rad(A) \ll A$, A = CF + B. $F \cap B \leq Rad(A)$ is clear. (2) \Leftrightarrow (3) By [11, Theorem 3.8]. \Box

Theorem 3.9: The next are equivalent, for a semiring *S*.

(1) S is semilocal.

(2) Each semimodule together with small radical is a WGS-semimodule.

(3) Each finitely generated semimodule is a WGS-semimodule.

(4) Each cyclic semimodule is a WGS-semimodule.

Proof: (1) \Rightarrow (2) Because every semimodule *A* there is a set (Γ) as well as an epimorphism $\varphi: S^{(\Gamma)} \to A$ together with $\varphi(Rad(S^{(\Gamma)})) \leq Rad(A)$ and $\frac{S^{(\Gamma)}}{Rad(S^{(\Gamma)}) \cong (S/I(S))^{(\Gamma)}}$ an epimorphism exists $\xi : S^{(\Gamma)}/Rad(S^{(\Gamma)}) \to \frac{A}{Rad(A)} \cdot \frac{A}{Rad(A)}$ is hence semisimple. and therefore *A* is a WGS-semimodule by applying Theorem 3.8.

 $(2) \Longrightarrow (3) \Longrightarrow (4)$ the proof obviously.

(4) \Rightarrow (1) By Proposition 3.5, since a semiring S is semilocal if and only if sS weakly supplemented. \Box

Example 3.10: Let p and q be prime numbers and consider the semiring $S = Z_{p,q} = \{\frac{x}{y} \mid x, y \in Z, y \neq 0, p \nmid y \text{ and } q \nmid y\}$, where S is a uniform semilocal Noetherian semidomain. Hence, _sS is a WGS-semimodule by using Theorem 3.8. Because _sS is Noetherian, it together with (ACC) to small subsemimodules. If _sS a GS-semimodule, _sS is therefore a supplemented semimodule using Remark 2.23, this results in a note of contradiction in [1, Example 2. 17].

4. **REFERENCES**

- 1. R. Alizade and E. Bugukasik, Cofinitely Weakly Supplemented Modules, Comm. Algebra, 31 (2003), 5377-5390.
- 2. I. Al-Khazzi, P. F. Smith, Modules with Chain Conditions on Superfluous Submodules, Comm. Algebra, 19 (1991), 2331-2351.
- 3. A. H. Alwan, Z. R. Sharif, ss-Supplemented semimodules, J. Interdiscip. Math. to appear.
- 4. E. Büyükasik, E. Mermut and S. Özdemir, Rad-supplemented modules, Rend. Semin. Mat. Univ. Padova, 124 (2010), 157-177.
- 5. J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers Math., (Birkhäuser, Boston, 2006)
- 6. J. S. Golan, semirings and their applications, Kluwer Acad. Publ., 1999
- 7. F. Kasch, Modules and Rings, Academic Press, London, 1982.
- 8. Y. Katsov, T. Nam, N. Tuyen, On subtractive semisimple semirings, Algebra Colloq. 16(3) (2009), 415-426.
- 9. Z. R. Sharif, A. H. Alwan, δ -Lifting and δ -Supplemented Semimodules, J. Optoelectron. Laser, 41(8) 2022, 164-171
- 10. N.X. Tuyen, H.X. Thang. On superfluous subsemimodules. Georgian Math J.; 10(4) (2003), 763-770.
- 11. Y. Wang and N. Ding, Generalized supplemented module, Taiwanese J. Math., 10 (2006), 1589-1601.
- 12. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.