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1. INTRODUCTION

Optimization stands as a prime process across the domains of study, engineering, and industry,
focusing on the selection of the best option out of a bunch of viable alternatives [1]. In case of
complicated issues where traditional gradient-based or exact methods, due to non-linearity, high
dimensionality, multimodality, or non-differentiability, fail to provide a solution, metaheuristic
algorithms have been recognized as powerful and fruitful solution strategies [2], [3], [4]. They are the
algorithms like Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony
Optimization (ACO) that have shown great success guided by natural phenomena, physical laws, or even
swarm intelligence [5].

On the other hand, the fast-paced growth of the new and hybrid metaheuristics has made it
imperative to have thorough and uniform benchmarking as one of the main methods. It is a scientifically
untenable position to claim the superiority of one algorithm over the other without a fair and
comprehensive comparison against the established peers on a diverse set of problems. The objective
framework that the Benchmarking provides can be used to [6], [7].

e Validate Performance: Show an algorithm's effectiveness and efficiency.

o Identify Niches: Determine the specific types of problems an algorithm works best for (e.g.,
exploitative vs. explorative).

e Drive Innovation: Indicate the weaknesses of the existing methods, hence leading to the development
of more robust algorithms.

e Ensure Reproducibility: Make it possible to directly compare the findings of various studies.

The goal of this paper is to present a well-organized overview of the benchmark setting in
material heuristics research. We classify the enormous variety of test problems into logical categories,
elucidating their mathematical foundations and roles in the assessment process. We also deliberate on
the criteria employed for determining success and wrap up with reflections on the current difficulties
and future paths of benchmarking practices.

2. RELATED WORK

The progress of benchmarking in optimization has always been closely related to the progress
of algorithms. The first evolutionary computation mainly worked with elementary test functions such as
Sphere and Rosenbrock to show the basic convergence properties [8], [9]. The initial research of De Jong
(1975) defined a classic set of test functions. The quality of the benchmarks kept pace with that of the
algorithms, and soon the highly multimodal functions like Rastrigin and Schwefel were introduced to
check the escape from local optima [10].

The foundation of the IEEE Congress on Evolutionary Computation (CEC) benchmark
competitions marked an important turning point in the history of benchmarking. The first notable event
was CEC 2005 [11], [12]. The organizing committee provided a selection of functions that were
standardized, scalable, rotated, hybrid, and composed, thus moving from the very simple separable
problems to the more realistic, difficult landscapes. This was indeed an important step in eliminating the
biased reporting and enabling the direct comparisons of the algorithms. The set of 23 functions as
described in the papers by Yao et al. (1999) and Suganthan et al. (2005) is still considered a fundamental
benchmark for every new algorithm [13], [14].

At the same time that mathematical benchmarks were being developed, the area of optimization
has always been primarily concerned with the actual application on real-world problems [15]. There
have been numerous studies that compared different metaheuristics on engineering design problems
such as Pressure Vessel Design and Welded Beam Design, scheduling, and logistics, which validated the
practical usefulness of the algorithms. For combinatorial problems, the existence of standard instance
libraries such as TSPLIB and QAPLIB has been a similar thing [16], [17].

Recent surveys conducted by Eiben and Smit (2011) and Ser et al. (2019) have highlighted one
of the major trends in research the big-scale optimization which was the focus of the CEC 2013 and 2017
conferences, alongside the dynamic and uncertain environments and the computationally intensive
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problems. Literature has always pointed out that using one benchmark is not enough hence the need for
a portfolio of various problems for fair algorithmic evaluation [18].

3. METAHEURISTIC ALGORITHMS

Metaheuristics are the top-level algorithmic frameworks which are problem-independent and
allow the efficient exploring of the search space. They trade off the guarantees of finding the global
optimum for the option of finding satisfactory solutions in a reasonable time for complex problems [19],
[20]. According to the broad classification, they can be differentiated into:

o Trajectory-Based (Single-Solution): These algorithms are working on one candidate solution, making
local moves iteratively for its improvement (e.g., Simulated Annealing, Tabu Search) [21].

e Population-Based: The population-based algorithms take a set of solutions which are maintained and
improved, the collective intelligence being utilized (e.g., Genetic Algorithms, Particle Swarm
Optimization, Differential Evolution) [22].

e Nature-Inspired vs. Non-Nature-Inspired: The classification based on the source of inspiration is the
common taxonomy, for example, evolution (GA), swarm behavior (PSO, ACO), physical processes
(SA), or human-related concepts (Teaching-Learning-Based Optimization) [23].

The algorithm performance is closely related to the parameters tuning and the exploration-
exploitation balance that the algorithm has in its working. The benchmarks in the next section are laying
down the capabilities of the algorithms for evaluation purposely to stress-test them.

4. EVALUATION FUNCTIONS AND BENCHMARK PROBLEMS

A comprehensive evaluation requires a diverse set of benchmark problems. This section
categorizes the most prominent types.

4.1. Classical Benchmark Functions (F1-F23)
Table 1. Comprehensive List of Classical Benchmark Functions (F1-F23)

Functi Global
# unetion Mathematical Equation Search Range f) a Characteristics
Name Optimum
First Category Unimodal Functions (Testing Exploitation)
n Simple,
F1 Sphere fx) = Z x? [-100,100]™ 0 symmetric,
= convex.
f&
n
Schwefel = Z Il 2; |l Unimodal, non-
F2 i= ¢ —10,10]™" 0
2.22 =t [ ] separable.
+ o
i=1
Schwefel " ¢ Unimodal, non
C -
F3 = E > x| [-100100]" 0 ‘
1.2 ) , 1( j:]_xj) [ ] separable.
i=
Schwefel fx) =max;{ll x; I , 1 <i Unimodal, non-
F4 —100,100]™ 0
2.21 < n} [ | separable.
n-1
fx) = Z [100(x;41 Non-convex,
Rosenbro = valley-shaped
F —x?)? —30,30]" ’
> ck xi) [ ] 0 hard to
+ (xl-
—1)?] converge.
Second Category Multimodal Functions (Testing Exploration)
n Di ti :
F6 |  Step fx) = Z (Ix; + 0.5))? | [~100,100]" 0 iscontinuous
i=1 plate-shaped.
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. fx) . .
Quartic Unimodal with
F7 n —1.28,1.28]" 0
w/ Noise | = Z ix{} + random[0,1) [ ] noise.
i=1
fx) Multimodal,
F8 | Schwefel _\" . [-500,500]™ -418.9829n | deceptive, many
h Zi:l xisin(yll % 1) local optima.
f® Highly
. T, multimodal,
F9 | Rastrigin | = Z [xf — 10cos(2mx;) [-5.12,5.12]" 0 . .
i=1 sinusoidal,
+ 10] separable.
f®
20exp(—0.2 1" 2) Complex
= —20exp(—0. —Z_ Xi i i
F10 | Ackley (it [-32,32]" 0 multimodal with
1 exponential and
- eXp(ZZ- 1cos(Zﬂxi)) cosine terms.
i=
+20+e
f®)
1 zn , Multimodal, but
= 20002, % local opti
F11 | Griewank 4000 L=y [~600,600]" 0 ocal optima are
n X regularly
- cos(—=) + 1 distributed.
i=1 Vi
f®)
I
= E{lOsinz(ﬂyl)
n-—1
+)  i-DA
i=
+10sin*(myi4)] + O
F12 Penalized - 1)2}; [~50,50]" 0 Multimodal with
1 + Z u(x;,10,100,4) penalty terms.
i=1
wherey; =1+ % (x; +
D), u(x;,a,k,m) =
k(x; —a)™ X, >a
{ 0 —a<x;<a
k(—x; —a)™ x; < —a
f®)
= 0.1{sin?(3mx;)
n-1 5
F13 Penalized + Ziﬂ (i =171 [~50,50]" 0 Multimodal with
2 + sin?(3mx;41)] + (% ’ penalty terms.
— 1)2[1 + sin?(2mx,) ]}
n
+ Z u(x;,5,100,4)
i=1
Third Category Low-Dimensional Multimodal Functions (Few local optima)
f®
~ '500
F14 | Foxholes 25 [—65.536,65.536 ~1 2D, 25 local
1 minima.
+ - >
jt 2O —a
j=1
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fX)
11
_ ” 4D,
F15 | Kowalik . ' [-5,5]* ~0.0003 approximation
_ xl(biz +biX2) X problem.
b? + bix5 + x4
1
— a2 _ 4, 2.6
Six-Hump f(x) =4x; —2.1x7 + 3 X1 2 € local
F16 | Camel +x,% [5,5]2 -1.0316 o
Back — 4x3 '
+ 4x3
fx)
5L, .
IR R B ! 2D, 3 global
F17 | Branin T € [-5,10], x, 0398 rr’linifa a
—-6)2+10(1— g)cos(xl) € [0,15] '
+ 10
fx)
= [14 (x1 + x5, + 1)%(19
_ — 14x; + 3x? — 14x,
F18 Gc_’:ijz‘:n + 6x,%, + 3x2)] X [30 [~2,2]? 3 Zz'i:ilrg:al
+ (2x, — 3x5)%(18 — 32x, '
+ 12x% + 48x, — 36X, X,
+ 27x3)]
fx)
H * 3 D, 4 local
F19 artman | _ _Z ciexp [_Z a [0.1]° 38628 3 4 oca
3 i=1 j=1 minima.
- pij)z]
fX)
4 6
F20 Hartman | _ _Z ciexp [_Z a (0,116 133224 6D,.4.loca1
6 i=1 j=1 minima.
- pij)z]
5
fO=-) [x-a)k
F21 | Shekel 5 i=1 ; [0,10]* -10.1532 4D, 5 local
—a;) minima.
tal™!
7
FR=-) [x-a)k
i= 4D, 7 local
F22 | Shekel 7 =1 ; [0,10]* -10.4028 /o
—a;) minima.
+a]™!
10
fR=-)  [Ex-a)k
F23 | Shekel 10 i=1 , [0,10]* -10.5363 4D, 10 local
—a;) minima.
+al™

Note: For functions F14-F23, the coefficients (a, ¢, p) are standard and can be found in the
referenced literature [24].

4.2. Real-World Engineering Problems

Metaheuristics are often tested on practical optimization problems to validate applicability.
Here is a comprehensive list of standard engineering benchmarks.
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Table 2. Comprehensive List of Real-World Engineering Problems

Problem

Mathematical Formulation

D i C traint
omatn (Objective = Minimize Cost) onstraints
First Category Mechanical Design
g1t —%1
+0.0193x; <0
f(X) = 0.6224x,x3%x, + 1.7781x,x%5 | g,:—x,
Pressure Vessel Structural/Mechan + 3.1661x12x4 +0.00954x; < 0
Design (PVD) ical + 19.84x%x4 g3: —mx2x,
x = [T, Th, R, L] 4
- §T[X3
+ 1296000 <0

1 X3%x3
91 T 7178542
<0

4x2 — x,x,

i = 2 92 T5cee(voxd — o
T.ensmn/.Compres Mechanical f(x) = (x3 + 2)x,x; 12566(x,x; — x
sion Spring (TSD) x = [d,D,N]

t+t——F5-1<0
5108x;

1 140.45x,
g3 X5x3
<0

Shear stress (1),
& bending stre(53
Welded Beam = 1.10471x2x, _
) Structural (o), buckling load
Design (WBD) + 0.04811x3x,(14.0 + x,)
x = [h 1 t,b] (Fe), end
S deflection.
f(x) = 0.7854x,x2(3.3333x2
+ 14.9334x, 11 traint
— 43.0934) cofns ra;n s on
Speed Reducer |y ISOBECE | i stess
Design (SRD) +x2) + 7.4777(x3 8 ’
3 transverse
+x7) deflections
+ 0.7854(x,x2 '
+ x5x2)

Second Category Structural Design

Three-Bar Truss

f(x) = (2V2x; + x,) x 1

Stress, buckling,

. Civil/Structural displacement
Design X = [44,4,] .
constraints.
f& 5000 Cross-section
[-Beam Design Structural = 5 = area, stress
x3(%1 1—22x4) + x26x4 + 2x2x4(x1—£ constraints.
Third Category Electrical Engineering
1 X1%;
: : . f&) =g~ 227 :
Gear Train Design Mechanical 6.931 x3x,4 Integer variables.
X = [ny,np,n¢,np] (integer)
Multiple
Brushless DC : Complex model for maximizing electromagnetic
Electrical
Wheel Motor

efficiency and minimizing mass.

and geometric
constraints.
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4.3. CEC Benchmark Suites
These are widely used in the computational intelligence community, especially for
competitions. Here is a detailed breakdown of key CEC suites.

Table 3. Comprehensive CEC Benchmark Suites (2005-2022)

. # of .
Suite | Year Probs Problem Types Key Features and Example Functions
F1-F5: Unimodal
CEC F6-F12: Basic Multimodal Introduced standardized benchmarking.
2005 2005 25 F13-F14: Expanded Example (F15): Hybrid Composition
Multimodal Function.
F15-F25: Hybrid Composition
CEC 2011 29 Real-World Problems Parameter estimation f<?r filters,
2011 antenna arrays, modeling, etc.
F1-F5: Unimodal
CEC 2013 )8 F6-F20: Basic Multimodal Focus on large-scale optimization (up to
2013 F21-F28: Composition 1000D).
Functions
CEC 2014 30 All Multimodal Specifically for single obje.cti.ve r.eal-
2014 parameter numerical optimization.
F1-F2: Unimodal Shifted, rotated, and hybrid functions to
CEC 2017 29 F3-F9: Multimodal avoid separability.
2017 F10-F19: Hybrid Example (F20): Shifted Rosenbrock’s
F20-F29: Composition plus Hybrid.
CEC 2020 10 All Multimodal Focus on single objective bound
2020 constrained problems.
CEC 2021 10 Single Objective Bound New test functions with complex Pareto
2021 Constrained sets.
CEC 2022 12 Single Objective Bound Includes functions with asymmetric and
2022 Constrained complex properties.

Table 3 provides an overview of all major CEC benchmark suites used in evolutionary
computation competitions from 2005 to 2022. Each suite is discussed year by year, the number of
problems is indicated, and the structure is described (unimodal, multimodal, hybrid, or composition
functions), the evolution was directed to a greater dimensionality and complexity was mainly depicted.
Complete CEC 2017 Benchmark Functions are illustrated in Table 4. It lists the foundational
mathematical functions (f;-f;) that serve as the building blocks for hybrid and composition functions
in the CEC 2017 suite. Each function is briefly named and mathematically defined to show the diversity
of landscapes.

Table 4. Basic Functions Used in CEC 2017

Basic Function Function Name Mathematical Formulation
D

fy Bent Cigar Function fi(x) =x% + 1062 x?

D
f, Zakharov Function fa(x) = Z x? + (Z 0.5x;)% + (Z 0.5x)*

i=1
f3 Rosenbrock's Function falx) = z (100(x? — x;41)% + (x; — 1)?)

i=1
fy Rastrigin's Function fs(x) = Z (x? — 10cos(2mx;) + 10)
i=1
! (sin®(Yx2+y?)-0.5)

fs Expanded Scaffer'sF6 | g(x,y) =0.5+ W, fo(x) = Yg(xi, xi41)
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= mi X, — 1o)2,dD + s (X; — uy)?) + 10(D
fo Lunacek Bi-Rastrigin f7(0) = min(Q(X; — #o)”, dD + sE(Xi = 1)) (
— Y'cos(2my;))
¢ Non-Continuous fa(x) = X(z? — 10cos(2mz;) + 10) with rounding
7 Rastrigin operation
D-1
foG) = sin?Gawy) + " (wi = D?[1
fg Levy Function Y )
+ 10sin*(nw; + 1)] + (wp — 1)?[1
+ sin?(2nwp)]
fo Modified Schwefel's fio(x) = 418.9829 x D — ¥'g(z;) with piecewise g(z;)
D
High Conditioned _ PRt N
f10 Elliptic fu(x) = E . 1(10 )D-1x;
i=
D
f11 Discus Function fiz(x) = 10°x2 + Z x?
i=2
1., 1
fa Ackley's Function | f13(¥) = ~20exp(=02 |- x?) — exp(j; Leos(2mx)
+20+e
D
20
fia(x) = E (Z [0.5%cos(2m - 3%(x; + 0.5))])
fi3 Weierstrass Function i=1 k=0
20
) Z [0.5cos(27 - 3 - 0.5)]
k=0
x? X
fia Griewank's Function fis(x) =Y 2000 Hcos(ﬁ) +1
f16(x)
D
10
=73 (1
fis Katsuura Function
i=1
32 . .
E | 2)x; —round(2/x;) | ;). 10
i /D% _ _—
+i > ) D2
j=1
f1e HappyCat Function fir(x) =l ¥x? = D |¥*+ (0.5%x? + ¥x;)/D + 0.5
= 2y2 _ 32 |1/2 2 .
‘@ HGBat Function | 1809 =1 GxP? = Bx)? 1V2+ (0587 + Tx)/D
+ 0.5
£ Expanded fro(x) = fr(fa(x1, x2)) + fr(fa(x2, x3)) + -
8 Griewank+Rosenbrock + f7(fa(xp,x1))
1 D-1 .
fo@ =57 ). (5 (in(50.059%) + D5,
fio Schaffer's F7 Function =1
= ’xlz +xf
Table 5. Complete CEC 2017 Test Suite (Unimodal Functions)
Function | Function Name Type Formulation F* Properties
Shifted and Fi(x) )
U d l,N = bl )
1 Rotated Bent Unimodal | = fi(M(x — 07)) 100 fmodat, von sepz?\ra €
. Smooth narrow ridge
Cigar + 100
. Fy(x)
2 Shifted and Unimodal | = f5(M(x — 0,)) 200 | Unimodal, Non-separable
Rotated Zakharov +200
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Table 5 Contains unimodal functions (F1-F2) used to evaluate an algorithm’s exploitation
ability. Each function is shifted and rotated to remove separability, ensuring a challenging yet smooth

landscape.

Table 6. Complete CEC 2017 Test Suite (Simple Multimodal Functions)

Function Function Name Type Formulation F* Properties
Shifted and Fy (x)z 048 Multi-modal, Non-
3 Rotated Multimodal | = f, # +1) | 300 | separable, Many
Rosenbrock's 4300 local optima
. Multi-modal, Non-
4 Shifted and Multimodal Fa() = fs(M(x = 00)) 400 | separable, Many
Rotated Rastrigin's + 400 "
local optima
Shifted and Multi-modal, Non-
F, = fe(M(x —
5 Rotated Expanded | Multimodal 5(0) = fe(M(x +05532) 500 separable,
Scaffer's F6 Asymmetrical
Shifted and F6(x)M(600(x — 09) Multi-modal, Non-
6 Rotated Lunacek | Multimodal | = 7(Tﬁ) 600 separable,
Bi-Rastrigin 1600 Asymmetrical
Shifted and
Rotlateed lillrcl)n " (x)s 12(x — 0,) Multi-modal, Non-
7 ) Multimodal =f3 (J) 700 separable,
Continuous 100 A trical
Rastrigin's + 700 symimetrica
. Fg(x)
Shifted and 8
512(x — Multi-modal, Non-
8 Rotated Levy Multimodal =f M) 800 Hit-moda’, on
Function 100 separable
+ 800
. Fy(x)
Shifted and o .
9 Rotated Schwefel's | Multimodal | = f,, (L 00 %)y | gqq | Multi-modal Non-
Function 100 separable
+900

Table 6 Summarizes functions F3-F9 that test exploration capabilities. These are non-separable,
asymmetric, and possess numerous local optima, representing the core multimodal challenges.

Table 7. Complete CEC 2017 Test Suite (Hybrid Functions)

Function Function Type | N Basic Functif)ns (with - Properties
Name proportions)
10 Fﬂﬁt:):il:n Hybrid | 3 | Zakharov(20%), Rosenbrock | 0 Multsler;l;riiié\l .
(40%), Rastrigin (40%)
1 subcomponents
Hybrid High Cond. Elliptic (30%), Multi-modal, Non-
11 Function | Hybrid | 3 Schwefel (30%), Bent Cigar 1100 separable
2 (40%) subcomponents
Hybrid Bent Cigar (30%), Rosenbrock Multi-modal, Non-
12 Function | Hybrid | 3 (30%), Lunacek Bi-Rastrigin 1200 separable
3 (40%) subcomponents
Hybrid High Cond. Elliptic (20%), Ackley Multi-modal, Non-
13 Function | Hybrid | 4 (20%), Schaffer F7 (20%), 1300 separable
4 Rastrigin (40%) subcomponents
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Hybrid Bent Cigar (20%), HGBat (20%), Multi-modal, Non-
14 Function | Hybrid | 4 Rastrigin (30%), Rosenbrock 1400 separable
5 (30%) subcomponents
Hybrid Expanded Schaffer F6 (20%), Multi-modal, Non-
15 Function | Hybrid | 4 HGBat (20%), Rosenbrock 1500 separable
6 (30%), Schwefel (30%) subcomponents
Hybrid Katsuura [19%], Ackley (20%), Multi-modal, Non-
16 Function | Hybrid | 5 Expanded Griewank+Rosenbrock 1600 separable
7 (20%), Schwefel (20%), Rastrigin subcomponents
(30%)
Hybrid High Cond. Elliptic (20%), Ackley Multi-modal, Non-
17 Function | Hybrid | 5 | (20%), Rastrigin (20%), HGBat | 1700 separable
8 (20%), Discus (20%) subcomponents
Bent Cigar (20%), Rastrigin
Hybrid (20%), Expanded Multi-modal, Non-
18 Function | Hybrid | 5 Griewank+Rosenbrock (20%), 1800 separable
9 Weierstrass (20%), Expanded subcomponents
Schaffer F6 (20%)
Hybrid HappyCat (10%), Katsuur.a' Multi-modal, Non-
19 Function | Hybrid | 6 (10%), Ackley (20%), Rastrigin 1900 separable
10 (20%), Schwefel (20%), Schaffer subcomponents
F7 (20%)
Table 8 Complete CEC 2017 Test Suite (Composition Functions)
Function Flll\]l;cnt:zn Type N Basic Fulr:i(::))ns (0.2, F* Properties
N Rosenbrock. (1.0,1,0), High Multi-modal,
Composition . Cond. Elliptic (20,1e-
20 : Composition | 3 . 2000 | Non-separable,
Function 1 6,100), Rastrigin Asymmetrical
(30,1,200)
o Rastrigin (10,1,0), Multi-modal,
Composition . .
21 Function 2 Composition | 3 Griewank (20,10,100), 2100 | Non-separable,
Schwefel (30,1,200) Asymmetrical
Rosenbrock (10,1,0), .
22 Composition | osition | 4 Ackley (20,10,100), 2200 Nl\c/)[rl:l?e;(;gie
Function 3 Schwefel (30,1,200), Asymmetrical’
Rastrigin (40,1,300)
Ackley (10,10,0), High
. Cond. Elliptic (20,1e- Multi-modal,
Composition . .
23 Function 4 Composition | 4 6,100), Griewank 2300 | Non-separable,
(30,10,200), Rastrigin Asymmetrical
(40,1,300)
Rastrigin (10,10,0),
Composition HappyCat (20,1,100), Multi-modal,
24 Function 5 Composition | 5 | Ackley (30,10,200), Discus | 2400 | Non-separable,
(40,1e-6,300), Rosenbrock Asymmetrical
(50,1,400)
N Expanded Schaffer F6 Multi-modal,
25 Composition Composition | 5 (10,1€-26,0), Schwefel 2500 | Non-separable
Function 6 (20,10,100), Griewank Asymmetrical,
(20,1e-6,200), Rosenbrock
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(30,10,300), Rastrigin
(40,5e-4,400)
HGBat (10,10,0), Rastrigin
(20,10,100), Schwefel
. (30,2.5,200), Bent Cigar Multi-modal,
Composition . )
26 Function 7 Composition (40,1e-26,300), High Cond. | 2600 | Non-separable,
Elliptic (50,1e-6,400), Asymmetrical
Expanded Schaffer F6
(60,5e-4,500)
Ackley (10,10,0),
Griewank (20,10,100),
" Discus (30,1e-6,200), Multi-modal,
Composition .
27 Function 8 Composition Rosenbrock (40,1,300), 2700 | Non-separable,
HappyCat (50,1,400), Asymmetrical
Expanded Schaffer F6
(60,5e-4,500)
. Hybrid 6 (10,1,0), Hybrid Multi-modal,
Composition . .
28 , Composition 7 (30,1,100), Hybrid 8 2800 | Non-separable,
Function 9 .
(50,1,200) Asymmetrical
. Hybrid 5 (10,1,0), Hybrid Multi-modal,
Composition . .
29 ) Composition 8(30,1,100), Hybrid 9 2900 | Non-separable,
Function 10 .
(50,1,200) Asymmetrical

Table 7 describes functions F10-F19, where multiple basic functions are combined in varying
proportions to simulate heterogeneous search spaces. Each hybrid function evaluates how well
algorithms adapt to problems containing subcomponents with differing characteristics.

Table 9. Complete CEC 2017 Test Suite (Key Experimental Settings)

Parameter Value
Dimensions D =10, 30, 50,100
Search Range [-100, 100]~D
MaxFES 10,000 x D
Runs per Problem 51
Initialization Uniform random in search range
Termination MaxFES reached or error < 1078
Shift Data Each function has unique shift vector o in [-80,80]"D
Rotation Each function has unique rotation matrix M

Table 8 details functions F20-F29 constructed by blending several hybrid or basic functions
with scaling, bias, and weight factors. These are the most complex benchmarks, designed to test
robustness, adaptability, and convergence accuracy in highly irregular, non-separable landscapes.

4.4. Combinatorial Optimization Benchmarks

Used for discrete or combinatorial metaheuristics. Below is a list of the most common simple
combinatorial problems. Table 9 indicates the main parameters that were common for CEC 2017, such
as dimension (10-100), search ranges, maximum evaluations, and the random initialization process.
Reproducibility is guaranteed and algorithm comparison is done fairly through these settings.

Table 10. Comprehensive Combinatorial Optimization Benchmarks
Description Mathematical Formulation
Routing Problems

Problem Standard Instances
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T 1li Find shortest n
ravetiing mnas 'o.r'es minz Ay n(ivr) (With(n + TSPLIB (e.g., berlin52,
Salesman tour visiting i=1 ' eil101, att532)
(TSP) each city once. 1) = n(1)) '
K
Vehicle Optimize : " n
. routes for a min Z CijXiji VRPWERB, Solomon
Routing . j=0 :
fleet of i=0 instances
(VRP) hicl k=1
venicles. s.t. capacity and tour constraints.
Scheduling Problems
Schedule job
Flow Shop chedu .e]o S . Taillard benchmarks, OR-
on machines in min C,,,, (makespan) i
(FSP) Library
same order.
Schedule jobs
Job Shop on machines .
C FT06, FT10, LA01-LA40
(JSP) with different i fmazx
orders.
Assignment Problems
drati n
Qu.a ratie Assign facilities . n QAPLIB (e.g.,, nugl2,
Assignment to locations i Z ;i) nug30, tai64c)
(QAP) ' = =
n
m
Generalized | Assign tasks to min E Zj_lcijxij
Assignment agents with m =1 . OR-Library
(GAP) capacity. s.t. Zj:lxif = 1 and capacity
constraints.
Packing/Covering
Select items Z"
max ViX;
K k ith 1 =1 '
. “fp;[aclt, wi mf;‘ vaue ~i=1 OR-Library, SAC-94 suite
(071, Multi) within s.t.z wix; < W, x; € {0,1}
capacity. i=1
Pack items into min " Y
Bin Packing minimum j=1 OR-Library, BPPLIB
n
number of bins. s.t. Zizlwixij < Cy;

4.5. Multi-Objective Benchmarks
For algorithms that are able to optimize several objectives opposing one another, here is a
comprehensive list of the standard multi-objective benchmarks.

ZDT Suite

The ZDT (Zitzler-Deb-Thiele) test suite, which consist of five standard bi-objective
benchmarking problems ZDT1-ZDTS6, is the first in the list. Each function is described in terms of its
mathematical formulation, Pareto front shape (convex, concave, or disconnected), and main purpose
testing convergence, diversity preservation, and the ability to maintain multiple subpopulations in
multimodal and discontinuous environments. See Table 10.

Table 11. ZDT Suite Functions Primarily For 2-Objective Problems. The Number of Decision Variables

Is N.
S h Pareto Front Key Feature &
Fn Obj earc Mathematical Formulation areto rron ey. e.a ure
Space Shape Difficulty
Simple, front.
7DT1 2 [0’1] n Convex mple, convex rron
X)) =x Tests convergence.
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9 n
909 =1+-=5) =x,
i)
x)=gx)(1 -
£(x) = gx)( g(x))
A =x 9 " Non-convex front.
7DT2 9 [0,1]" gx)=1+ mz_ X; Non-convex Tests algorithm's
’ I 1(;(2 (Concave) ability to handle
f209 = g1 = C5)") concave geometries.
(X)) =x
9 n
g =1+ n—1 Zi=2xi Conveg, disconnected
f2(%) segments. Tests ability
ZDT3 2 [0,1]n £ Disconnected to find and maintain
=g(x)[1- 1 multiple sub-
7 9
populations.
L)
- sin(107f; (x
i) =x
9 Multimodal. Many local
xef1 | =1 +n10(n - Pareto fronts. Tests
ZDT4 2 Xon + Z [xiz — 10cos(4mx;)] Convex convergence and
€ [-5,5] =2 escape from local
fi(%) optima.
x)=gx)(1-
£2(x) = g(x)( g(x))
]:1(1)() 4 in6(6 Non-uniformly
=1-ew(= xil)sm (6mx1) dense solutions
ZDT6 2 [0,1]n gx)=1+ 9[":—2)16"]0-25 Non-convex (biased). Tests
n- £,(x) algorithms' ability to
f2(x) =91 —( P (X))Z) maintain diversity.

DTLZ Suite

The DTLZ (Deb-Thiele-Laumanns-Zitzler) suite, designed for scalable multi-objective
optimization with two or more objectives. The paper describes the mathematical structure, Pareto front
geometry, and main difficulties of functions such as DTLZ1 (linear, multimodal), DTLZ2 (concave,
continuous), and DTLZ7 (disconnected). These functions are a prerequisite for the assessment of both
scalability and algorithm performance in the high-dimensional objective spaces. DTLZ suite functions
are summarized in Table 11.

Table 12. DTLZ Suite Functions

Objectives | Search | Mathematical Formulation Pareto Key Features &
M) Space (Word Equation Format) Front Shape Difficulties

fi(x) = V2 (1 + g(xm)) x
[[{i=1}"{M-1} x;

fi(x) = %2 (1 + g(xm)) x

Fn

Multimodal
with linear

Linear correlation
i=1}MM=-3) %) x (1 -
DTLZ1 | 2-Many [0, 1]" (-4 x} {IE/I— 1}1);)) *( (hyperplane among
£.(x) = 1/‘(1 +’ () % (1 - 2 f,=0.5) objectives.
mit T . )g " Challenging due
1

g(%un) = 100 [ [x] + to many local
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¥_{Xi€Xm} ((x; - 0.5)% - optima and slow
cos(20m(x; - 0.5))) ] convergence.
fi(x) = (1 + g(xm)) x
i=1}M{M-1 .
L=t 1) cosa e/ Smooth,
scalable
fj,(X) = (1 +g(xm) x benchmark for
(T1_{i=1}"{M~;} cos(x;"  / Concave (on evaluatin
DTLZ2 | 2-Many | [0,1]" | 2))xsin(x{M-j+1}°w/2) a unit &
fm(x) = (1 + g(xm)) x sin(x,* | hypersphere) convergence
m n ! and diversity in
m/2) S
multi-objective
lgorithms.
8(%m) = 5_{X/€xn} (x; - 0.5)?, FeorTmS
typically a =1
Produces
2MN(M-1
() =x,i=1...M-1 disco(nnecged
Fn) = (1 + gkn)) * B, B ) .
£ (M1}, 8) areto-optima
T ’ regions. Tests
DTLZ7 | 2-Many [0, 1]" Disconnected algorithm
80m) = 1+ (9 / [xml) e
obustness in
Z_{xi€xm} Xi maintainin
h=M - _{i=1}"{M-1} [(f;/ pamaming
(1+g)) x (1 +sin(3m6))] diversity and
' handling
discontinuities.

Scalable to M objectives. The letter k represents the number of parameters related to the
position (normally k =n - M + 1). The notation x_M symbolizes the last k variables.

WFG Suite

The WFG (Walking Fish Group) benchmark suite, consisting of nine complex, parameterized
functions (WFG1-WFG9). Each is characterized by specific transformations such as bias, non-
separability, and deception. The Pareto front shapes range from convex to concave and mixed forms.
WEFG suite is used to measure an algorithm's weight, its flexibility and dealing ability with human-like
problems in multi-objective optimization. WFG suite functions summarized in

Table 12.
Table 13. WFG Suite Functions
Function Obj. | Search | Mathematical Formulation Pareto Key Feature &
(M) Space (Key Characteristics) Front Shape Difficulty
Biased &
Shape: Convex & Mixed Mixed multimodal. Difficult
X
WEG1 2- [0, 2i]" Trans.formations.: Polynomial Convex/ due to flat regions
Many bias, flat regions, and and complex
Concave
parameter dependence. parameter
interactions.
Shape: Convex Non-separable &
Transformations: Non- disconnected. Tests
2- . . Convex,
WFG2 [0, 2i]» separable reduction (sub- , convergence on a
Many . . Disconnected .
problems require grouping convex front with
variables). disconnected parts.
WFG3 2- [0, 2i]" Shape: L.inear Linear, Degenerate front
Many Transformations: Non- Degenerate (true Pareto set has
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separable reduction and a alower dimension
linear degenerate front. than the objective
space).
Multi-
Shape: Concave uH
) T ¢ i Multi dal modal. Concave
- ransformations: Multi-moda
WFG4 [0, 2i]n ) Concave front with many
Many (many local optima) i .
o ] local optima, testing
via sin functions.
convergence.
) Shape: Concave Deceptive. Hard to
WFG5 Man [0, 2i]» Transformations: Deceptive Concave find the true global
y minima. Pareto front.
Non-
Shape: Concave separable. Tests
WEFG6 2- [0, 2i]n Transformatio.ns: Nf)n- Concave algorithms on .a
Many separable reduction without concave front with
using sin functions. variable
dependencies.
Shape: Concave Biased. Creates a
WEG7 2- [0, 2i" Transformations.: Param.eter Concave r.lonjuni.form
Many dependence (shift) causing distribution of
bias. solutions.
Shape: Concave Biased & non-
WEGS 2- [0, 2i] » Transformation§: Parameter Concave se':p.arable. A.more
Many dependence (shift) and non- difficult version of
separability. WFG7.
C it
Shape: Concave . .omp.051 €
) T . i Combi difficulties. The
- ransformations: Combines
WEFG9 [0, 2i]m ) . . Concave most complex WFG
Many bias (shift), non-separability, .
. ) problem, combining
and multi-modality. .
multiple challenges.

Very adaptive and customizable. Stands for the number of position parameters (which should
be a multiple of M - 1) and | is the number of distance parameters.n =k + L.

A comparative summary of the three main multi-objective benchmark families ZDT, DTLZ, and
WEG is provided in Table 13. The discussion addresses their scalability, complexity, and main areas of
research. The ZDT suite handles easy two-objective problems, DTLZ is for large many-objective cases,
and WFG is for algorithm testing under various conditions such as composite, biased, and deceptive.

Table 14. Summary and Use Cases

Function Family | Primary Use | Scalability Key Strengths Typical Use Cases
Basic algorithm
7DT 2-Objective Fixed (2 Simple, intuitive, validation, testing
Testing only) fast to compute. convergence and
diversity mechanisms.
Syst tic desi
ystema }C .eSIgn Testing scalability to
for M objectives; .
Many- , , many objectives,
o Highly diverse front .
DTLZ Objective ) performance on specific
, Scalable shapes (linear, i
Testing geometries (e.g.,
concave, . .
. disconnected, linear).
disconnected).
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Highly
configurable; can . .
, Stress-testing algorithms
Complex Highl introduce real- on complex, composite
WFG Challenge ghly world-like piex, p )
. Scalable . problems that mimic
Testing challenges (bias, e 1
. real-world difficulties.
non-separability,
deception).

4.6. Evaluation Metrics

Quantifying Algorithmic Performance Requires Multiple Metrics.

e Solution Quality: Best, worst, mean, and median fitness value over multiple runs.

e Convergence Speed: Function Evaluation (NFE) or iterations count to reach a target solution quality.

e Robustness: The quality standard deviation of the final solution over a number of runs.

e Statistical Significance: Non-parametric tests (like Wilcoxon signed-rank test) are used to
establish that the performance differences are not due to chance.

Multi-Objective Metrics:

e Hypervolume (HV): Area of the objective space that is controlled by the Pareto front.

e Inverted Generational Distance (IGD): Mean length from the real Pareto front to the
discovered solutions.

e Spread (A): Indicates the degree of dispersion reached among the acquired solutions.

5. DISCUSSION

The very large variety of benchmarks laid out here emphasizes their indispensable part in the
progress of metaheuristics research. However, some significant problems and considerations are still
present:

The No Free Lunch (NFL) Theorem: This theorem states that no method can be the best in all
problem contexts. The performance across different benchmark categories (unimodal vs. multimodal,
continuous vs. combinatorial, single vs. multi-) multi-objective is one area where this is clearly seen; a
particular algorithm may outperform in one case but it may also be the worst in the next. Thus,
benchmarking should be regarded as a way of the algorithm domain of competence through which the
declaring of a universal winner is avoided.

e Overfitting and Benchmark-Specific Tuning: One major concern in this area is that in the process of
tuning an algorithm's parameters for a particular benchmark suite, e.g., CEC 2017 functions, one may
end up with an impressive performance on that suite alone and non-generalization in other problems
including real-world applications. It is imperative for the researchers to carry out cautious tuning of
parameters and evaluating performance on an independent test set or through an entirely different
benchmark category.

e The Gap between Synthetic and Real-World Problems: The CEC functions and other mathematical
benchmarks do a great job of exposing the specific algorithmic traits; however, they often do it at the
cost of not being able to depict the scenario in which many real-world simulations are "black-box",
expensive, noisy, and with multiple constraints. There is a need for the community to present more
and more application-driven benchmarks that portray these features.

e Performance Metrics and Reproducibility: A full assessment should include not only the mean best
fitness but also other factors. These factors include statistical significance tests, convergence curves,
and robustness measures, to name a few. Additionally, employing standard benchmark suites and
code open-sourcing are crucial to deliver reproducibility and fair comparison.

e The Proliferation of Novel Algorithms: Nature-inspired metaheuristics that are new to the field keep
showing up, sometimes with strong assertions. The skilful and rigorous benchmarking against the
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established comprehensive suites described in this paper is the most effective means of preventing
the publication of inferior and/or duplicate methods.

¢ Benchmarking Complexity and Resources: A full-scale benchmark that covers all these
categories of algorithms and problems will require a vast amount of computational
resources and a lot of time. Researchers will need to choose wisely which sets of
benchmarks will be the most appropriate ones to validate their claims regarding the
algorithm's performance.

6. CONCLUSION

This paper has provided a structured and comprehensive review of the complete benchmark
ecosystem used in metaheuristic optimization. We have categorized and detailed the mathematical
foundations of the classic 23 test functions, numerous real-world engineering problems, the evolving
CEC competition suites, fundamental combinatorial benchmarks, and essential multi-objective
problems. This complete classification provides researchers with a thorough and unambiguous road
map to the choice of proper benchmarks for a strict algorithmic evaluation.

The dialogue underlined that good benchmarking is not simply about getting the best numbers
from a single suite but rather a comprehensive performance evaluation of the entire problem portfolio,
with great attention to statistical significance, real-world applicability, and the risk of overfitting. As the
discipline changes, the following areas should be the focus of future benchmarking:

Closing the gap between artificial and real-world problems,
Setting up standards for dynamic, large-scale, and uncertain optimization,
Establishing benchmarks in the new areas such as multi-task optimization and transfer optimization,

v oW

Supporting open-source frameworks that assure reproducibility and equitable comparison.
The application of these strict and wide-ranging benchmarking methods will help the
metaheuristics community continue to be a breeding ground for true innovation and to provide solid

optimization solutions to the intricate problems of science and technology.
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