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The proliferation of metaheuristic algorithms for solving complex 

optimization problems has necessitated robust and standardized 

benchmarking practices. A fair and comprehensive evaluation is 

crucial for validating an algorithm's performance, understanding 

its strengths and weaknesses, and guiding future algorithmic 

development. This paper provides a comprehensive review of the 

landscape of benchmarking in metaheuristic optimization. We 

systematically categorize and detail the primary types of 

benchmark problems, including the classic set of 23 mathematical 

functions, real-world engineering problems, specialized CEC 

benchmark suites, combinatorial optimization benchmarks, and 

multi-objective problems. For each category, we present the 

fundamental mathematical formulations and discuss their specific 

characteristics and challenges. Furthermore, we outline the 

standard evaluation metrics used to quantify algorithmic 

performance. Finally, we discuss current challenges in 

benchmarking, such as the no free lunch theorem, the issue of 

overfitting to test suites, and the need for more diverse and real-

world benchmarks. This review serves as a foundational guide for 

researchers and practitioners in selecting appropriate 

benchmarks and conducting rigorous, reproducible evaluations of 

metaheuristic algorithms. 
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1. INTRODUCTION 
 

Optimization stands as a prime process across the domains of study, engineering, and industry, 

focusing on the selection of the best option out of a bunch of viable alternatives [1]. In case of 

complicated issues where traditional gradient-based or exact methods, due to non-linearity, high 

dimensionality, multimodality, or non-differentiability, fail to provide a solution, metaheuristic 

algorithms have been recognized as powerful and fruitful solution strategies [2], [3], [4]. They are the 

algorithms like Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony 

Optimization (ACO) that have shown great success guided by natural phenomena, physical laws, or even 

swarm intelligence [5]. 

On the other hand, the fast-paced growth of the new and hybrid metaheuristics has made it 

imperative to have thorough and uniform benchmarking as one of the main methods. It is a scientifically 

untenable position to claim the superiority of one algorithm over the other without a fair and 

comprehensive comparison against the established peers on a diverse set of problems. The objective 

framework that the Benchmarking provides can be used to [6], [7]. 

 Validate Performance: Show an algorithm's effectiveness and efficiency.  

 Identify Niches: Determine the specific types of problems an algorithm works best for (e.g., 

exploitative vs. explorative). 

 Drive Innovation: Indicate the weaknesses of the existing methods, hence leading to the development 

of more robust algorithms.  

 Ensure Reproducibility: Make it possible to directly compare the findings of various studies. 

The goal of this paper is to present a well-organized overview of the benchmark setting in 

material heuristics research. We classify the enormous variety of test problems into logical categories, 

elucidating their mathematical foundations and roles in the assessment process. We also deliberate on 

the criteria employed for determining success and wrap up with reflections on the current difficulties 

and future paths of benchmarking practices. 

 

2. RELATED WORK 
 

The progress of benchmarking in optimization has always been closely related to the progress 

of algorithms. The first evolutionary computation mainly worked with elementary test functions such as 

Sphere and Rosenbrock to show the basic convergence properties [8], [9]. The initial research of De Jong 

(1975) defined a classic set of test functions. The quality of the benchmarks kept pace with that of the 

algorithms, and soon the highly multimodal functions like Rastrigin and Schwefel were introduced to 

check the escape from local optima [10]. 

The foundation of the IEEE Congress on Evolutionary Computation (CEC) benchmark 

competitions marked an important turning point in the history of benchmarking. The first notable event 

was CEC 2005 [11], [12]. The organizing committee provided a selection of functions that were 

standardized, scalable, rotated, hybrid, and composed, thus moving from the very simple separable 

problems to the more realistic, difficult landscapes. This was indeed an important step in eliminating the 

biased reporting and enabling the direct comparisons of the algorithms. The set of 23 functions as 

described in the papers by Yao et al. (1999) and Suganthan et al. (2005) is still considered a fundamental 

benchmark for every new algorithm [13], [14]. 

At the same time that mathematical benchmarks were being developed, the area of optimization 

has always been primarily concerned with the actual application on real-world problems [15]. There 

have been numerous studies that compared different metaheuristics on engineering design problems 

such as Pressure Vessel Design and Welded Beam Design, scheduling, and logistics, which validated the 

practical usefulness of the algorithms. For combinatorial problems, the existence of standard instance 

libraries such as TSPLIB and QAPLIB has been a similar thing [16], [17]. 

Recent surveys conducted by Eiben and Smit (2011) and Ser et al. (2019) have highlighted one 

of the major trends in research the big-scale optimization which was the focus of the CEC 2013 and 2017 

conferences, alongside the dynamic and uncertain environments and the computationally intensive 
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problems. Literature has always pointed out that using one benchmark is not enough hence the need for 

a portfolio of various problems for fair algorithmic evaluation [18]. 

 

3. METAHEURISTIC ALGORITHMS 
 

Metaheuristics are the top-level algorithmic frameworks which are problem-independent and 

allow the efficient exploring of the search space. They trade off the guarantees of finding the global 

optimum for the option of finding satisfactory solutions in a reasonable time for complex problems [19], 

[20]. According to the broad classification, they can be differentiated into: 

 Trajectory-Based (Single-Solution): These algorithms are working on one candidate solution, making 

local moves iteratively for its improvement (e.g., Simulated Annealing, Tabu Search) [21].  

 Population-Based: The population-based algorithms take a set of solutions which are maintained and 

improved, the collective intelligence being utilized (e.g., Genetic Algorithms, Particle Swarm 

Optimization, Differential Evolution) [22].  

 Nature-Inspired vs. Non-Nature-Inspired: The classification based on the source of inspiration is the 

common taxonomy, for example, evolution (GA), swarm behavior (PSO, ACO), physical processes 

(SA), or human-related concepts (Teaching-Learning-Based Optimization) [23]. 

The algorithm performance is closely related to the parameters tuning and the exploration-

exploitation balance that the algorithm has in its working. The benchmarks in the next section are laying 

down the capabilities of the algorithms for evaluation purposely to stress-test them. 

 

4. EVALUATION FUNCTIONS AND BENCHMARK PROBLEMS 
 

A comprehensive evaluation requires a diverse set of benchmark problems. This section 

categorizes the most prominent types. 

 

4.1. Classical Benchmark Functions (F1-F23) 

Table 1. Comprehensive List of Classical Benchmark Functions (F1-F23) 

# 
Function 

Name 
Mathematical Equation Search Range 

Global 

Optimum 
Characteristics 

First Category Unimodal Functions (Testing Exploitation) 

F1 Sphere 𝑓(x) =∑ 𝑥𝑖
2

𝑛

𝑖=1
 [−100,100]𝑛 0 

Simple, 

symmetric, 

convex. 

F2 
Schwefel 

2.22 

𝑓(x)

=∑ ∥ 𝑥𝑖 ∥
𝑛

𝑖=1

+∏ ∥ 𝑥𝑖 ∥
𝑛

𝑖=1
 

[−10,10]𝑛 0 
Unimodal, non-

separable. 

F3 
Schwefel 

1.2 
𝑓(x) =∑ (∑ 𝑥𝑗

𝑖

𝑗=1
)2

𝑛

𝑖=1

 [−100,100]𝑛 0 
Unimodal, non-

separable. 

F4 
Schwefel 

2.21 

𝑓(x) = max⁡𝑖{∥ 𝑥𝑖 ∥ ,1 ≤ 𝑖

≤ 𝑛} 
[−100,100]𝑛 0 

Unimodal, non-

separable. 

F5 
Rosenbro

ck 

𝑓(x) =∑ [100(𝑥𝑖+1
𝑛−1

𝑖=1

− 𝑥𝑖
2)2

+ (𝑥𝑖
− 1)2] 

[−30,30]𝑛 0 

Non-convex, 

valley-shaped, 

hard to 

converge. 

Second Category Multimodal Functions (Testing Exploration) 

F6 Step 𝑓(x) =∑ (⌊𝑥𝑖 + 0.5⌋)2
𝑛

𝑖=1
 [−100,100]𝑛 0 

Discontinuous, 

plate-shaped. 
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F7 
Quartic 

w/ Noise 

𝑓(x)

=∑ 𝑖𝑥𝑖
4

𝑛

𝑖=1
+ random[0,1) 

[−1.28,1.28]𝑛 0 
Unimodal with 

noise. 

F8 Schwefel 

𝑓(x)

= ∑ −𝑥𝑖sin⁡(√∥ 𝑥𝑖 ∥)
𝑛

𝑖=1
 

[−500,500]𝑛 -418.9829n 

Multimodal, 

deceptive, many 

local optima. 

F9 Rastrigin 

𝑓(x)

=∑ [𝑥𝑖
2 − 10cos⁡(2𝜋𝑥𝑖)

𝑛

𝑖=1

+ 10] 

[−5.12,5.12]𝑛 0 

Highly 

multimodal, 

sinusoidal, 

separable. 

F10 Ackley 

𝑓(x)

= −20exp⁡(−0.2√
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
)

− exp⁡(
1

𝑛
∑ cos⁡(2𝜋𝑥𝑖)

𝑛

𝑖=1
)

+ 20 + 𝑒 

[−32,32]𝑛 0 

Complex 

multimodal with 

exponential and 

cosine terms. 

F11 Griewank 

𝑓(x)

=
1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1

−∏ cos⁡(
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

 

[−600,600]𝑛 0 

Multimodal, but 

local optima are 

regularly 

distributed. 

F12 
Penalized 

1 

𝑓(x)

=
𝜋

𝑛
{10sin⁡2(𝜋𝑦1)

+∑ (𝑦𝑖 − 1)
2

𝑛−1

𝑖=1
[1

+ 10sin⁡2(𝜋𝑦𝑖+1)] + (𝑦𝑛
− 1)2}

+∑ 𝑢(𝑥𝑖, 10,100,4)
𝑛

𝑖=1
 

where 𝑦𝑖 = 1 +
1

4
(𝑥𝑖 +

1), 𝑢(𝑥𝑖, 𝑎, 𝑘, 𝑚) =

{

𝑘(𝑥𝑖 − 𝑎)
𝑚 𝑥𝑖 > 𝑎

0 −𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 < −𝑎
 

[−50,50]𝑛 0 
Multimodal with 

penalty terms. 

F13 
Penalized 

2 

𝑓(x)

= 0.1{sin⁡2(3𝜋𝑥1)

+∑ (𝑥𝑖 − 1)2
𝑛−1

𝑖=1
[1

+ sin⁡2(3𝜋𝑥𝑖+1)] + (𝑥𝑛
− 1)2[1 + sin⁡2(2𝜋𝑥𝑛)]}

+∑ 𝑢(𝑥𝑖, 5,100,4)
𝑛

𝑖=1
 

[−50,50]𝑛 0 
Multimodal with 

penalty terms. 

Third Category Low-Dimensional Multimodal Functions (Few local optima) 

F14 Foxholes 

𝑓(x)

= [
1

500

+∑
1

𝑗 +∑ (𝑥𝑖 − 𝑎𝑖𝑗)6
2

𝑖=1

25

𝑗=1

]−1 

[−65.536,65.536]2 ~1 
2D, 25 local 

minima. 
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F15 Kowalik 

𝑓(x)

=∑ [𝑎𝑖

11

𝑖=1

−
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

]2 

[−5,5]4 ~0.0003 

4D, 

approximation 

problem. 

F16 

Six-Hump 

Camel 

Back 

𝑓(x) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1
6

+ 𝑥1𝑥2
− 4𝑥2

2

+ 4𝑥2
4 

[−5,5]2 -1.0316 
2D, 6 local 

minima. 

F17 Branin 

𝑓(x)

= (𝑥2 −
5.1

4𝜋2
𝑥1
2 +

5

𝜋
𝑥1

− 6)2 + 10(1 −
1

8𝜋
)cos⁡(𝑥1)

+ 10 

𝑥1
∈ [−5,10], 𝑥2
∈ [0,15] 

0.398 
2D, 3 global 

minima. 

F18 
Goldstein

-Price 

𝑓(x)

= [1 + (𝑥1 + 𝑥2 + 1)
2(19

− 14𝑥1 + 3𝑥1
2 − 14𝑥2

+ 6𝑥1𝑥2 + 3𝑥2
2)] × [30

+ (2𝑥1 − 3𝑥2)
2(18 − 32𝑥1

+ 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2

+ 27𝑥2
2)] 

[−2,2]2 3 
2D, 4 local 

minima. 

F19 
Hartman 

3 

𝑓(x)

= −∑ 𝑐𝑖exp
4

𝑖=1
⁡[−∑ 𝑎𝑖𝑗

3

𝑗=1
(𝑥𝑗

− 𝑝𝑖𝑗)
2] 

[0,1]3 -3.8628 
3D, 4 local 

minima. 

F20 
Hartman 

6 

𝑓(x)

= −∑ 𝑐𝑖exp
4

𝑖=1
⁡[−∑ 𝑎𝑖𝑗

6

𝑗=1
(𝑥𝑗

− 𝑝𝑖𝑗)
2] 

[0,1]6 -3.3224 
6D, 4 local 

minima. 

F21 Shekel 5 

𝑓(x) = −∑ [(x − a𝑖)(x
5

𝑖=1

− a𝑖)
𝑇

+ 𝑐𝑖]
−1 

[0,10]4 -10.1532 
4D, 5 local 

minima. 

F22 Shekel 7 

𝑓(x) = −∑ [(x − a𝑖)(x
7

𝑖=1

− a𝑖)
𝑇

+ 𝑐𝑖]
−1 

[0,10]4 -10.4028 
4D, 7 local 

minima. 

F23 Shekel 10 

𝑓(x) = −∑ [(x − a𝑖)(x
10

𝑖=1

− a𝑖)
𝑇

+ 𝑐𝑖]
−1 

[0,10]4 -10.5363 
4D, 10 local 

minima. 

 

Note: For functions F14-F23, the coefficients (a, c, p) are standard and can be found in the 

referenced literature [24]. 

 
4.2. Real-World Engineering Problems 

Metaheuristics are often tested on practical optimization problems to validate applicability. 

Here is a comprehensive list of standard engineering benchmarks. 
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Table 2. Comprehensive List of Real-World Engineering Problems 

Problem Domain 
Mathematical Formulation 

(Objective = Minimize Cost) 
Constraints 

First Category Mechanical Design 

Pressure Vessel 

Design (PVD) 

Structural/Mechan

ical 

𝑓(x) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2

+ 3.1661𝑥1
2𝑥4

+ 19.84𝑥1
2𝑥3 

x = [𝑇𝑠, 𝑇ℎ , 𝑅, 𝐿] 

𝑔1: −𝑥1
+ 0.0193𝑥3 ≤ 0 

𝑔2: −𝑥2
+ 0.00954𝑥3 ≤ 0 

𝑔3: −𝜋𝑥3
2𝑥4

−
4

3
𝜋𝑥3

3

+ 1296000 ≤ 0 

Tension/Compres

sion Spring (TSD) 
Mechanical 

𝑓(x) = (𝑥3 + 2)𝑥2𝑥1
2 

x = [𝑑,𝐷, 𝑁] 

𝑔1: 1 −
𝑥2
3𝑥3

71785𝑥1
4

≤ 0 

𝑔2:
4𝑥2

2 − 𝑥1𝑥2
12566(𝑥2𝑥1

3 − 𝑥1
4)

+
1

5108𝑥1
2 − 1 ≤ 0 

𝑔3: 1 −
140.45𝑥1
𝑥2
2𝑥3

≤ 0 

Welded Beam 

Design (WBD) 
Structural 

𝑓(x)

= 1.10471𝑥1
2𝑥2

+ 0.04811𝑥3𝑥4(14.0 + 𝑥2) 

x = [ℎ, 𝑙, 𝑡, 𝑏] 

Shear stress (𝜏), 

bending stress 

(𝜎), buckling load 

(𝑃𝑐), end 

deflection. 

Speed Reducer 

Design (SRD) 
Mechanical 

𝑓(x) = 0.7854𝑥1𝑥2
2(3.3333𝑥3

2

+ 14.9334𝑥3
− 43.0934)

− 1.508𝑥1(𝑥6
2

+ 𝑥7
2) + 7.4777(𝑥6

3

+ 𝑥7
3)

+ 0.7854(𝑥4𝑥6
2

+ 𝑥5𝑥7
2) 

11 constraints on 

surface stress, 

bending stress, 

transverse 

deflections. 

Second Category Structural Design 

Three-Bar Truss 

Design 
Civil/Structural 

𝑓(x) = (2√2𝑥1 + 𝑥2) × 𝑙 

x = [𝐴1, 𝐴2] 

Stress, buckling, 

displacement 

constraints. 

I-Beam Design Structural 

𝑓(x)

=
5000

𝑥3(𝑥1 − 2𝑥4)3

12 +
𝑥2𝑥4

3

6 + 2𝑥2𝑥4(
𝑥1 − 𝑥4
2 )2

 

Cross-section 

area, stress 

constraints. 

Third Category Electrical Engineering 

Gear Train Design Mechanical 
𝑓(x) = (

1

6.931
−
𝑥1𝑥2
𝑥3𝑥4

)2 

x = [𝑛𝐴, 𝑛𝐵 , 𝑛𝐶 , 𝑛𝐷] (integer) 

Integer variables. 

Brushless DC 

Wheel Motor 
Electrical 

Complex model for maximizing 

efficiency and minimizing mass. 

Multiple 

electromagnetic 

and geometric 

constraints. 
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4.3. CEC Benchmark Suites 

These are widely used in the computational intelligence community, especially for 

competitions. Here is a detailed breakdown of key CEC suites. 

 

Table 3. Comprehensive CEC Benchmark Suites (2005-2022) 

Suite Year 
# of 

Probs 
Problem Types Key Features and Example Functions 

CEC 

2005 
2005 25 

F1-F5: Unimodal 

F6-F12: Basic Multimodal 

F13-F14: Expanded 

Multimodal 

F15-F25: Hybrid Composition 

Introduced standardized benchmarking. 

Example (F15): Hybrid Composition 

Function. 

CEC 

2011 
2011 22 Real-World Problems 

Parameter estimation for filters, 

antenna arrays, modeling, etc. 

CEC 

2013 
2013 28 

F1-F5: Unimodal 

F6-F20: Basic Multimodal 

F21-F28: Composition 

Functions 

Focus on large-scale optimization (up to 

1000D). 

CEC 

2014 
2014 30 All Multimodal 

Specifically for single objective real-

parameter numerical optimization. 

CEC 

2017 
2017 29 

F1-F2: Unimodal 

F3-F9: Multimodal 

F10-F19: Hybrid 

F20-F29: Composition 

Shifted, rotated, and hybrid functions to 

avoid separability. 

Example (F20): Shifted Rosenbrock’s 

plus Hybrid. 

CEC 

2020 
2020 10 All Multimodal 

Focus on single objective bound 

constrained problems. 

CEC 

2021 
2021 10 

Single Objective Bound 

Constrained 

New test functions with complex Pareto 

sets. 

CEC 

2022 
2022 12 

Single Objective Bound 

Constrained 

Includes functions with asymmetric and 

complex properties. 

 

Table 3 provides an overview of all major CEC benchmark suites used in evolutionary 

computation competitions from 2005 to 2022. Each suite is discussed year by year, the number of 

problems is indicated, and the structure is described (unimodal, multimodal, hybrid, or composition 

functions), the evolution was directed to a greater dimensionality and complexity was mainly depicted. 

Complete CEC 2017 Benchmark Functions are illustrated in Table 4. It lists the foundational 

mathematical functions (f₁–f₁₉) that serve as the building blocks for hybrid and composition functions 

in the CEC 2017 suite. Each function is briefly named and mathematically defined to show the diversity 

of landscapes. 

 

Table 4. Basic Functions Used in CEC 2017 

Basic Function Function Name Mathematical Formulation 

f₁ Bent Cigar Function 𝑓1(𝑥) = 𝑥1
2 + 106∑ 𝑥𝑖

2
𝐷

𝑖=2
 

f₂ Zakharov Function 𝑓3(𝑥) =∑ 𝑥𝑖
2

𝐷

𝑖=1
+ (∑ 0.5𝑥𝑖

𝐷

𝑖=1
)2 + (∑ 0.5𝑥𝑖

𝐷

𝑖=1
)4 

f₃ Rosenbrock's Function 𝑓4(𝑥) = ∑ (100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)
2)

𝐷−1

𝑖=1
 

f₄ Rastrigin's Function 𝑓5(𝑥) =∑ (𝑥𝑖
2 − 10cos⁡(2𝜋𝑥𝑖) + 10

𝐷

𝑖=1
) 

f₅ Expanded Scaffer's F6 𝑔(𝑥, 𝑦) = 0.5 +
(sin⁡2(√𝑥2+𝑦2)−0.5)

(1+0.001(𝑥2+𝑦2))2
, 𝑓6(𝑥) = ∑𝑔(𝑥𝑖, 𝑥𝑖+1) 
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f₆ Lunacek Bi-Rastrigin 
𝑓7(𝑥) = min⁡(∑(𝑋̇𝑖 − 𝜇0)

2, 𝑑𝐷 + 𝑠∑(𝑋̇𝑖 − 𝜇1)
2) + 10(𝐷

− ∑cos⁡(2𝜋Σ̇𝑖)) 

f₇ 
Non-Continuous 

Rastrigin 

𝑓8(𝑥) = ∑(𝑧𝑖
2 − 10cos⁡(2𝜋𝑧𝑖) + 10) with rounding 

operation 

f₈ Levy Function 

𝑓9(𝑥) = sin⁡2(𝜋𝑤1) +∑
𝐷−1

𝑖=1
(𝑤𝑖 − 1)2[1

+ 10sin⁡2(𝜋𝑤𝑖 + 1)] + (𝑤𝐷 − 1)
2[1

+ sin⁡2(2𝜋𝑤𝐷)] 

f₉ Modified Schwefel's 𝑓10(𝑥) = 418.9829 × 𝐷 − ∑𝑔(𝑧𝑖) with piecewise 𝑔(𝑧𝑖) 

f₁₀ 
High Conditioned 

Elliptic 
𝑓11(𝑥) =∑ (106)

𝑖−1
𝐷−1𝑥𝑖

2

𝐷

𝑖=1

 

f₁₁ Discus Function 𝑓12(𝑥) = 106𝑥1
2 +∑ 𝑥𝑖

2
𝐷

𝑖=2
 

f₁₂ Ackley's Function 𝑓13(𝑥) = −20exp⁡(−0.2√
1

𝐷
∑𝑥𝑖

2) − exp⁡(
1

𝐷
∑cos⁡(2𝜋𝑥𝑖))

+ 20 + 𝑒 

f₁₃ Weierstrass Function 

𝑓14(𝑥) =∑ (∑ [0.5𝑘cos⁡(2𝜋 ⋅ 3𝑘(𝑥𝑖 + 0.5))]
20

𝑘=0
)

𝐷

𝑖=1

−𝐷∑ [0.5𝑘cos⁡(2𝜋 ⋅ 3𝑘 ⋅ 0.5)]
20

𝑘=0
 

f₁₄ Griewank's Function 𝑓15(𝑥) = ∑
𝑥𝑖
2

4000
− ∏cos⁡(

𝑥𝑖

√𝑖
) + 1 

f₁₅ Katsuura Function 

𝑓16(𝑥)

=
10

𝐷2
∏ (1

𝐷

𝑖=1

+ 𝑖∑
∣ 2𝑗𝑥𝑖 − round(2𝑗𝑥𝑖) ∣

2𝑗

32

𝑗=1

)10/𝐷
2
−
10

𝐷2
 

f₁₆ HappyCat Function 𝑓17(𝑥) =∣ ∑𝑥𝑖
2 −𝐷 ∣1/4+ (0.5∑𝑥𝑖

2 +∑𝑥𝑖)/𝐷 + 0.5 

f₁₇ HGBat Function 
𝑓18(𝑥) =∣ (∑𝑥𝑖

2)2 − (∑𝑥𝑖)
2 ∣1/2+ (0.5∑𝑥𝑖

2 + ∑𝑥𝑖)/𝐷

+ 0.5 

f₁₈ 
Expanded 

Griewank+Rosenbrock 

𝑓19(𝑥) = 𝑓7(𝑓4(𝑥1, 𝑥2)) + 𝑓7(𝑓4(𝑥2, 𝑥3)) +⋯

+ 𝑓7(𝑓4(𝑥𝐷, 𝑥1)) 

f₁₉ Schaffer's F7 Function 

𝑓20(𝑥) = [
1

𝐷 − 1
∑ (√𝑠𝑖 ⋅ (sin⁡(50.0𝑠𝑖

0.2)
𝐷−1

𝑖=1
+ 1)]2, 𝑠𝑖

= √𝑥𝑖
2 + 𝑥𝑖+1

2  

 

Table 5. Complete CEC 2017 Test Suite (Unimodal Functions) 

Function Function Name Type Formulation F* Properties 

1 

Shifted and 

Rotated Bent 

Cigar 

Unimodal 

𝐹1(𝑥)

= 𝑓1(𝑀(𝑥 − 𝑜1))

+ 100 

100 
Unimodal, Non-separable, 

Smooth narrow ridge 

2 
Shifted and 

Rotated Zakharov 
Unimodal 

𝐹2(𝑥)

= 𝑓3(𝑀(𝑥 − 𝑜2))

+ 200 

200 Unimodal, Non-separable 
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Table 5 Contains unimodal functions (F1–F2) used to evaluate an algorithm’s exploitation 

ability. Each function is shifted and rotated to remove separability, ensuring a challenging yet smooth 

landscape. 

 

Table 6. Complete CEC 2017 Test Suite (Simple Multimodal Functions) 

Function Function Name Type Formulation F* Properties 

3 

Shifted and 

Rotated 

Rosenbrock's 

Multimodal 

𝐹3(𝑥)

= 𝑓4(
2.048(𝑥 − 𝑜3)

100
+ 1)

+ 300 

300 

Multi-modal, Non-

separable, Many 

local optima 

4 
Shifted and 

Rotated Rastrigin's 
Multimodal 

𝐹4(𝑥) = 𝑓5(𝑀(𝑥 − 𝑜4))

+ 400 
400 

Multi-modal, Non-

separable, Many 

local optima 

5 

Shifted and 

Rotated Expanded 

Scaffer's F6 

Multimodal 
𝐹5(𝑥) = 𝑓6(𝑀(𝑥 − 𝑜5))

+ 500 
500 

Multi-modal, Non-

separable, 

Asymmetrical 

6 

Shifted and 

Rotated Lunacek 

Bi-Rastrigin 

Multimodal 

𝐹6(𝑥)

= 𝑓7(
𝑀(600(𝑥 − 𝑜6))

100
)

+ 600 

600 

Multi-modal, Non-

separable, 

Asymmetrical 

7 

Shifted and 

Rotated Non-

Continuous 

Rastrigin's 

Multimodal 

𝐹7(𝑥)

= 𝑓8(
5.12(𝑥 − 𝑜7)

100
)

+ 700 

700 

Multi-modal, Non-

separable, 

Asymmetrical 

8 

Shifted and 

Rotated Levy 

Function 

Multimodal 

𝐹8(𝑥)

= 𝑓9(
5.12(𝑥 − 𝑜8)

100
)

+ 800 

800 
Multi-modal, Non-

separable 

9 

Shifted and 

Rotated Schwefel's 

Function 

Multimodal 

𝐹9(𝑥)

= 𝑓10(
1000(𝑥 − 𝑜9)

100
)

+ 900 

900 
Multi-modal, Non-

separable 

 

Table 6 Summarizes functions F3–F9 that test exploration capabilities. These are non-separable, 

asymmetric, and possess numerous local optima, representing the core multimodal challenges. 

 

Table 7. Complete CEC 2017 Test Suite (Hybrid Functions) 

Function 
Function 

Name 
Type N 

Basic Functions (with 

proportions) 
F* Properties 

10 

Hybrid 

Function 

1 

Hybrid 3 
Zakharov (20%), Rosenbrock 

(40%), Rastrigin (40%) 
1000 

Multi-modal, Non-

separable 

subcomponents 

11 

Hybrid 

Function 

2 

Hybrid 3 

High Cond. Elliptic (30%), 

Schwefel (30%), Bent Cigar 

(40%) 

1100 

Multi-modal, Non-

separable 

subcomponents 

12 

Hybrid 

Function 

3 

Hybrid 3 

Bent Cigar (30%), Rosenbrock 

(30%), Lunacek Bi-Rastrigin 

(40%) 

1200 

Multi-modal, Non-

separable 

subcomponents 

13 

Hybrid 

Function 

4 

Hybrid 4 

High Cond. Elliptic (20%), Ackley 

(20%), Schaffer F7 (20%), 

Rastrigin (40%) 

1300 

Multi-modal, Non-

separable 

subcomponents 
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14 

Hybrid 

Function 

5 

Hybrid 4 

Bent Cigar (20%), HGBat (20%), 

Rastrigin (30%), Rosenbrock 

(30%) 

1400 

Multi-modal, Non-

separable 

subcomponents 

15 

Hybrid 

Function 

6 

Hybrid 4 

Expanded Schaffer F6 (20%), 

HGBat (20%), Rosenbrock 

(30%), Schwefel (30%) 

1500 

Multi-modal, Non-

separable 

subcomponents 

16 

Hybrid 

Function 

7 

Hybrid 5 

Katsuura (10%), Ackley (20%), 

Expanded Griewank+Rosenbrock 

(20%), Schwefel (20%), Rastrigin 

(30%) 

1600 

Multi-modal, Non-

separable 

subcomponents 

17 

Hybrid 

Function 

8 

Hybrid 5 

High Cond. Elliptic (20%), Ackley 

(20%), Rastrigin (20%), HGBat 

(20%), Discus (20%) 

1700 

Multi-modal, Non-

separable 

subcomponents 

18 

Hybrid 

Function 

9 

Hybrid 5 

Bent Cigar (20%), Rastrigin 

(20%), Expanded 

Griewank+Rosenbrock (20%), 

Weierstrass (20%), Expanded 

Schaffer F6 (20%) 

1800 

Multi-modal, Non-

separable 

subcomponents 

19 

Hybrid 

Function 

10 

Hybrid 6 

HappyCat (10%), Katsuura 

(10%), Ackley (20%), Rastrigin 

(20%), Schwefel (20%), Schaffer 

F7 (20%) 

1900 

Multi-modal, Non-

separable 

subcomponents 

 

Table 8 Complete CEC 2017 Test Suite (Composition Functions) 

Function 
Function 

Name 
Type N 

Basic Functions (σ, λ, 

bias) 
F* Properties 

20 
Composition 

Function 1 
Composition 3 

Rosenbrock (10,1,0), High 

Cond. Elliptic (20,1e-

6,100), Rastrigin 

(30,1,200) 

2000 

Multi-modal, 

Non-separable, 

Asymmetrical 

21 
Composition 

Function 2 
Composition 3 

Rastrigin (10,1,0), 

Griewank (20,10,100), 

Schwefel (30,1,200) 

2100 

Multi-modal, 

Non-separable, 

Asymmetrical 

22 
Composition 

Function 3 
Composition 4 

Rosenbrock (10,1,0), 

Ackley (20,10,100), 

Schwefel (30,1,200), 

Rastrigin (40,1,300) 

2200 

Multi-modal, 

Non-separable, 

Asymmetrical 

23 
Composition 

Function 4 
Composition 4 

Ackley (10,10,0), High 

Cond. Elliptic (20,1e-

6,100), Griewank 

(30,10,200), Rastrigin 

(40,1,300) 

2300 

Multi-modal, 

Non-separable, 

Asymmetrical 

24 
Composition 

Function 5 
Composition 5 

Rastrigin (10,10,0), 

HappyCat (20,1,100), 

Ackley (30,10,200), Discus 

(40,1e-6,300), Rosenbrock 

(50,1,400) 

2400 

Multi-modal, 

Non-separable, 

Asymmetrical 

25 
Composition 

Function 6 
Composition 5 

Expanded Schaffer F6 

(10,1e-26,0), Schwefel 

(20,10,100), Griewank 

(20,1e-6,200), Rosenbrock 

2500 

Multi-modal, 

Non-separable, 

Asymmetrical 
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(30,10,300), Rastrigin 

(40,5e-4,400) 

26 
Composition 

Function 7 
Composition 6 

HGBat (10,10,0), Rastrigin 

(20,10,100), Schwefel 

(30,2.5,200), Bent Cigar 

(40,1e-26,300), High Cond. 

Elliptic (50,1e-6,400), 

Expanded Schaffer F6 

(60,5e-4,500) 

2600 

Multi-modal, 

Non-separable, 

Asymmetrical 

27 
Composition 

Function 8 
Composition 6 

Ackley (10,10,0), 

Griewank (20,10,100), 

Discus (30,1e-6,200), 

Rosenbrock (40,1,300), 

HappyCat (50,1,400), 

Expanded Schaffer F6 

(60,5e-4,500) 

2700 

Multi-modal, 

Non-separable, 

Asymmetrical 

28 
Composition 

Function 9 
Composition 3 

Hybrid 6 (10,1,0), Hybrid 

7 (30,1,100), Hybrid 8 

(50,1,200) 

2800 

Multi-modal, 

Non-separable, 

Asymmetrical 

29 
Composition 

Function 10 
Composition 3 

Hybrid 5 (10,1,0), Hybrid 

8 (30,1,100), Hybrid 9 

(50,1,200) 

2900 

Multi-modal, 

Non-separable, 

Asymmetrical 

 

Table 7 describes functions F10–F19, where multiple basic functions are combined in varying 

proportions to simulate heterogeneous search spaces. Each hybrid function evaluates how well 

algorithms adapt to problems containing subcomponents with differing characteristics. 

 

Table 9. Complete CEC 2017 Test Suite (Key Experimental Settings) 

Parameter Value 

Dimensions D = 10, 30, 50, 100 

Search Range [-100, 100]^D 

MaxFES 10,000 × D 

Runs per Problem 51 

Initialization Uniform random in search range 

Termination MaxFES reached or error < 10⁻⁸ 

Shift Data Each function has unique shift vector o in [-80,80]^D 

Rotation Each function has unique rotation matrix M 

 

Table 8 details functions F20–F29 constructed by blending several hybrid or basic functions 

with scaling, bias, and weight factors. These are the most complex benchmarks, designed to test 

robustness, adaptability, and convergence accuracy in highly irregular, non-separable landscapes. 

 

4.4. Combinatorial Optimization Benchmarks 

Used for discrete or combinatorial metaheuristics. Below is a list of the most common simple 

combinatorial problems. Table 9 indicates the main parameters that were common for CEC 2017, such 

as dimension (10-100), search ranges, maximum evaluations, and the random initialization process. 

Reproducibility is guaranteed and algorithm comparison is done fairly through these settings. 

 

Table 10. Comprehensive Combinatorial Optimization Benchmarks 

Problem Description Mathematical Formulation Standard Instances 

Routing Problems 
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Travelling 

Salesman 

(TSP) 

Find shortest 

tour visiting 

each city once. 

min⁡∑ 𝑑𝜋(𝑖),𝜋(𝑖+1)
𝑛

𝑖=1
 (with 𝜋(𝑛 +

1) = 𝜋(1)) 

TSPLIB (e.g., berlin52, 

eil101, att532) 

Vehicle 

Routing 

(VRP) 

Optimize 

routes for a 

fleet of 

vehicles. 

min⁡∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘
𝑛

𝑗=0

𝑛

𝑖=0

𝐾

𝑘=1

 

s.t. capacity and tour constraints. 

VRPWEB, Solomon 

instances 

Scheduling Problems 

Flow Shop 

(FSP) 

Schedule jobs 

on machines in 

same order. 

min𝐶𝑚𝑎𝑥 (makespan) 
Taillard benchmarks, OR-

Library 

Job Shop 

(JSP) 

Schedule jobs 

on machines 

with different 

orders. 

min𝐶𝑚𝑎𝑥 FT06, FT10, LA01-LA40 

Assignment Problems 

Quadratic 

Assignment 

(QAP) 

Assign facilities 

to locations. 
min⁡∑ ∑ 𝑎𝑖𝑗𝑏𝑝(𝑖)𝑝(𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 
QAPLIB (e.g., nug12, 

nug30, tai64c) 

Generalized 

Assignment 

(GAP) 

Assign tasks to 

agents with 

capacity. 

min⁡∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑚

𝑗=1

𝑛

𝑖=1

 

s.t. ∑ 𝑥𝑖𝑗 = 1
𝑚

𝑗=1
 and capacity 

constraints. 

OR-Library 

Packing/Covering 

Knapsack 

(0/1, Multi) 

Select items 

with max value 

within 

capacity. 

max⁡∑ 𝑣𝑖𝑥𝑖
𝑛

𝑖=1
 

s.t.∑ 𝑤𝑖𝑥𝑖
𝑛

𝑖=1
≤ 𝑊, 𝑥𝑖 ∈ {0,1} 

OR-Library, SAC-94 suite 

Bin Packing 

Pack items into 

minimum 

number of bins. 

min⁡∑ 𝑦𝑗
𝑛

𝑗=1
 

s.t. ∑ 𝑤𝑖𝑥𝑖𝑗
𝑛

𝑖=1
≤ 𝐶𝑦𝑗  

OR-Library, BPPLIB 

 
4.5. Multi-Objective Benchmarks 

For algorithms that are able to optimize several objectives opposing one another, here is a 

comprehensive list of the standard multi-objective benchmarks. 

 

ZDT Suite 

The ZDT (Zitzler-Deb-Thiele) test suite, which consist of five standard bi-objective 

benchmarking problems ZDT1-ZDT6, is the first in the list. Each function is described in terms of its 

mathematical formulation, Pareto front shape (convex, concave, or disconnected), and main purpose 

testing convergence, diversity preservation, and the ability to maintain multiple subpopulations in 

multimodal and discontinuous environments. See Table 10. 

 

Table 11. ZDT Suite Functions Primarily For 2-Objective Problems. The Number of Decision Variables 

Is N. 

Fn Obj 
Search 

Space 
Mathematical Formulation 

Pareto Front 

Shape 

Key Feature & 

Difficulty 

ZDT1 2 [0,1] n 
𝑓1(x) = 𝑥1 

Convex 
Simple, convex front. 

Tests convergence. 
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𝑔(x) = 1 +
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2
 

𝑓2(x) = 𝑔(x)(1 − √
𝑓1(x)

𝑔(x)
) 

ZDT2 2 [0,1] n 

𝑓1(x) = 𝑥1 

𝑔(x) = 1 +
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2
 

𝑓2(x) = 𝑔(x)(1 − (
𝑓1(x)

𝑔(x)
)2) 

Non-convex 

(Concave) 

Non-convex front. 

Tests algorithm's 

ability to handle 

concave geometries. 

ZDT3 2 [0,1] n 

𝑓1(x) = 𝑥1 

𝑔(x) = 1 +
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2
 

𝑓2(x)

= 𝑔(x)[1 − √
𝑓1(x)

𝑔(x)

−
𝑓1(x)

𝑔(x)
sin⁡(10𝜋𝑓1(x))] 

Disconnected 

Convex, disconnected 

segments. Tests ability 

to find and maintain 

multiple sub-

populations. 

ZDT4 2 

𝑥1 ∈ [0,1] 

𝑥2..𝑛
∈ [−5,5] 

𝑓1(x) = 𝑥1 

𝑔(x)

= 1 + 10(𝑛 − 1)

+∑ [𝑥𝑖
2 − 10cos⁡(4𝜋𝑥𝑖)]

𝑛

𝑖=2
 

𝑓2(x) = 𝑔(x)(1 − √
𝑓1(x)

𝑔(x)
) 

Convex 

Multimodal. Many local 

Pareto fronts. Tests 

convergence and 

escape from local 

optima. 

ZDT6 2 [0,1]n 

𝑓1(x)

= 1 − exp⁡(−4𝑥1)sin⁡
6(6𝜋𝑥1) 

𝑔(x) = 1 + 9[
∑ 𝑥𝑖
𝑛
𝑖=2

𝑛 − 1
]0.25 

𝑓2(x) = 𝑔(x)(1 − (
𝑓1(x)

𝑔(x)
)2) 

Non-convex 

Non-uniformly 

dense solutions 

(biased). Tests 

algorithms' ability to 

maintain diversity. 

 

DTLZ Suite 

The DTLZ (Deb–Thiele–Laumanns–Zitzler) suite, designed for scalable multi-objective 

optimization with two or more objectives. The paper describes the mathematical structure, Pareto front 

geometry, and main difficulties of functions such as DTLZ1 (linear, multimodal), DTLZ2 (concave, 

continuous), and DTLZ7 (disconnected). These functions are a prerequisite for the assessment of both 

scalability and algorithm performance in the high-dimensional objective spaces. DTLZ suite functions 

are summarized in Table 11. 

 

Table 12. DTLZ Suite Functions 

Fn 
Objectives 

(M) 

Search 

Space 

Mathematical Formulation 

(Word Equation Format) 

Pareto 

Front Shape 

Key Features & 

Difficulties 

DTLZ1 2 – Many [0, 1]ⁿ 

f₁(x) = ½ (1 + g(xₘ)) × 

∏_{i=1}^{M−1} xᵢ 

fⱼ(x) = ½ (1 + g(xₘ)) × 

(∏_{i=1}^{M−ⱼ} xᵢ) × (1 − 

x_{M−ⱼ+1}) 

fₘ(x) = ½ (1 + g(xₘ)) × (1 − 

x₁) 

g(xₘ) = 100 [ |xₘ| + 

Linear 

(hyperplane 

Σ fₘ = 0.5) 

Multimodal 

with linear 

correlation 

among 

objectives. 

Challenging due 

to many local 
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Σ_{xᵢ∈xₘ} ((xᵢ − 0.5)² − 

cos(20π(xᵢ − 0.5))) ] 

optima and slow 

convergence. 

DTLZ2 2 – Many [0, 1]ⁿ 

f₁(x) = (1 + g(xₘ)) × 

∏_{i=1}^{M−1} cos(xᵢᵅ π / 

2) 

fⱼ(x) = (1 + g(xₘ)) × 

(∏_{i=1}^{M−ⱼ} cos(xᵢᵅ π / 

2)) × sin(x_{M−ⱼ+1}ᵅ π / 2) 

fₘ(x) = (1 + g(xₘ)) × sin(x₁ᵅ 

π / 2) 

 

g(xₘ) = Σ_{xᵢ∈xₘ} (xᵢ − 0.5)², 

typically α = 1 

Concave (on 

a unit 

hypersphere) 

Smooth, 

scalable 

benchmark for 

evaluating 

convergence 

and diversity in 

multi-objective 

algorithms. 

DTLZ7 2 – Many [0, 1]ⁿ 

fᵢ(x) = xᵢ, i = 1 … M−1 

fₘ(x) = (1 + g(xₘ)) × h(f₁, f₂, 

…, f_{M−1}, g) 

 

g(xₘ) = 1 + (9 / |xₘ|) × 

Σ_{xᵢ∈xₘ} xᵢ 

h = M − Σ_{i=1}^{M−1} [(fᵢ / 

(1 + g)) × (1 + sin(3πfᵢ))] 

Disconnected 

Produces 

2^(M−1) 

disconnected 

Pareto-optimal 

regions. Tests 

algorithm 

robustness in 

maintaining 

diversity and 

handling 

discontinuities. 

 

Scalable to M objectives. The letter k represents the number of parameters related to the 

position (normally k = n - M + 1). The notation x_M symbolizes the last k variables. 

 

WFG Suite 

The WFG (Walking Fish Group) benchmark suite, consisting of nine complex, parameterized 
functions (WFG1–WFG9). Each is characterized by specific transformations such as bias, non-
separability, and deception. The Pareto front shapes range from convex to concave and mixed forms. 
WFG suite is used to measure an algorithm's weight, its flexibility and dealing ability with human-like 
problems in multi-objective optimization. WFG suite functions summarized in  

Table 12. 

 

Table 13. WFG Suite Functions 

Function 
Obj. 

(M) 

Search 

Space 

Mathematical Formulation 

(Key Characteristics) 

Pareto 

Front Shape 

Key Feature & 

Difficulty 

WFG1 
2-

Many 
[0, 2i]n 

Shape: Convex & Mixed 

Transformations: Polynomial 

bias, flat regions, and 

parameter dependence. 

Mixed 

Convex/ 

Concave 

Biased & 

multimodal. Difficult 

due to flat regions 

and complex 

parameter 

interactions. 

WFG2 
2-

Many 
[0, 2i]n 

Shape: Convex 

Transformations: Non-

separable reduction (sub-

problems require grouping 

variables). 

Convex, 

Disconnected 

Non-separable & 

disconnected. Tests 

convergence on a 

convex front with 

disconnected parts. 

WFG3 
2-

Many 
[0, 2i]n 

Shape: Linear 

Transformations: Non-

Linear, 

Degenerate 

Degenerate front 

(true Pareto set has 
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separable reduction and a 

linear degenerate front. 

a lower dimension 

than the objective 

space). 

WFG4 
2-

Many 
[0, 2i]n 

Shape: Concave 

Transformations: Multi-modal 

(many local optima) 

via sin functions. 

Concave 

Multi-

modal. Concave 

front with many 

local optima, testing 

convergence. 

WFG5 
2-

Many 
[0, 2i]n 

Shape: Concave 

Transformations: Deceptive 

minima. 

Concave 

Deceptive. Hard to 

find the true global 

Pareto front. 

WFG6 
2-

Many 
[0, 2i]n 

Shape: Concave 

Transformations: Non-

separable reduction without 

using sin functions. 

Concave 

Non-

separable. Tests 

algorithms on a 

concave front with 

variable 

dependencies. 

WFG7 
2-

Many 
[0, 2i]n 

Shape: Concave 

Transformations: Parameter 

dependence (shift) causing 

bias. 

Concave 

Biased. Creates a 

non-uniform 

distribution of 

solutions. 

WFG8 
2-

Many 
[0, 2i] n 

Shape: Concave 

Transformations: Parameter 

dependence (shift) and non-

separability. 

Concave 

Biased & non-

separable. A more 

difficult version of 

WFG7. 

WFG9 
2-

Many 
[0, 2i] n 

Shape: Concave 

Transformations: Combines 

bias (shift), non-separability, 

and multi-modality. 

Concave 

Composite 

difficulties. The 

most complex WFG 

problem, combining 

multiple challenges. 

 

Very adaptive and customizable. Stands for the number of position parameters (which should 

be a multiple of M - 1) and l is the number of distance parameters. n = k + l. 

A comparative summary of the three main multi-objective benchmark families ZDT, DTLZ, and 

WFG is provided in Table 13. The discussion addresses their scalability, complexity, and main areas of 

research. The ZDT suite handles easy two-objective problems, DTLZ is for large many-objective cases, 

and WFG is for algorithm testing under various conditions such as composite, biased, and deceptive. 

 

Table 14. Summary and Use Cases 

Function Family Primary Use Scalability Key Strengths Typical Use Cases 

ZDT 
2-Objective 

Testing 

Fixed (2 

only) 

Simple, intuitive, 

fast to compute. 

Basic algorithm 

validation, testing 

convergence and 

diversity mechanisms. 

DTLZ 

Many-

Objective 

Testing 

Highly 

Scalable 

Systematic design 

for M objectives; 

diverse front 

shapes (linear, 

concave, 

disconnected). 

Testing scalability to 

many objectives, 

performance on specific 

geometries (e.g., 

disconnected, linear). 
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WFG 

Complex 

Challenge 

Testing 

Highly 

Scalable 

Highly 

configurable; can 

introduce real-

world-like 

challenges (bias, 

non-separability, 

deception). 

Stress-testing algorithms 

on complex, composite 

problems that mimic 

real-world difficulties. 

 

4.6. Evaluation Metrics 

Quantifying Algorithmic Performance Requires Multiple Metrics. 

 Solution Quality: Best, worst, mean, and median fitness value over multiple runs. 

 Convergence Speed: Function Evaluation (NFE) or iterations count to reach a target solution quality. 

 Robustness: The quality standard deviation of the final solution over a number of runs. 

 Statistical Significance: Non-parametric tests (like Wilcoxon signed-rank test) are used to 

establish that the performance differences are not due to chance. 

 

Multi-Objective Metrics: 

 Hypervolume (HV): Area of the objective space that is controlled by the Pareto front. 

 Inverted Generational Distance (IGD): Mean length from the real Pareto front to the 

discovered solutions. 

 Spread (Δ): Indicates the degree of dispersion reached among the acquired solutions. 

 

5. DISCUSSION 
 

The very large variety of benchmarks laid out here emphasizes their indispensable part in the 

progress of metaheuristics research. However, some significant problems and considerations are still 

present: 

The No Free Lunch (NFL) Theorem: This theorem states that no method can be the best in all 

problem contexts. The performance across different benchmark categories (unimodal vs. multimodal, 

continuous vs. combinatorial, single vs. multi-) multi-objective is one area where this is clearly seen; a 

particular algorithm may outperform in one case but it may also be the worst in the next. Thus, 

benchmarking should be regarded as a way of the algorithm domain of competence through which the 

declaring of a universal winner is avoided. 

 

 Overfitting and Benchmark-Specific Tuning: One major concern in this area is that in the process of 

tuning an algorithm's parameters for a particular benchmark suite, e.g., CEC 2017 functions, one may 

end up with an impressive performance on that suite alone and non-generalization in other problems 

including real-world applications. It is imperative for the researchers to carry out cautious tuning of 

parameters and evaluating performance on an independent test set or through an entirely different 

benchmark category. 

 The Gap between Synthetic and Real-World Problems: The CEC functions and other mathematical 

benchmarks do a great job of exposing the specific algorithmic traits; however, they often do it at the 

cost of not being able to depict the scenario in which many real-world simulations are "black-box", 

expensive, noisy, and with multiple constraints. There is a need for the community to present more 

and more application-driven benchmarks that portray these features. 

 Performance Metrics and Reproducibility: A full assessment should include not only the mean best 

fitness but also other factors. These factors include statistical significance tests, convergence curves, 

and robustness measures, to name a few. Additionally, employing standard benchmark suites and 

code open-sourcing are crucial to deliver reproducibility and fair comparison. 

 The Proliferation of Novel Algorithms: Nature-inspired metaheuristics that are new to the field keep 

showing up, sometimes with strong assertions. The skilful and rigorous benchmarking against the 

https://journal.hmjournals.com/index.php/JECNAM


Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM)              ISSN: 2799-1156     32 

Journal homepage: https://journal.hmjournals.com/index.php/JECNAM 

established comprehensive suites described in this paper is the most effective means of preventing 

the publication of inferior and/or duplicate methods. 

 Benchmarking Complexity and Resources: A full-scale benchmark that covers all these 

categories of algorithms and problems will require a vast amount of computational 

resources and a lot of time. Researchers will need to choose wisely which sets of 

benchmarks will be the most appropriate ones to validate their claims regarding the 

algorithm's performance. 

 

6. CONCLUSION 
 

This paper has provided a structured and comprehensive review of the complete benchmark 

ecosystem used in metaheuristic optimization. We have categorized and detailed the mathematical 

foundations of the classic 23 test functions, numerous real-world engineering problems, the evolving 

CEC competition suites, fundamental combinatorial benchmarks, and essential multi-objective 

problems. This complete classification provides researchers with a thorough and unambiguous road 

map to the choice of proper benchmarks for a strict algorithmic evaluation. 

The dialogue underlined that good benchmarking is not simply about getting the best numbers 

from a single suite but rather a comprehensive performance evaluation of the entire problem portfolio, 

with great attention to statistical significance, real-world applicability, and the risk of overfitting. As the 

discipline changes, the following areas should be the focus of future benchmarking: 

 

A. Closing the gap between artificial and real-world problems, 

B. Setting up standards for dynamic, large-scale, and uncertain optimization, 

C. Establishing benchmarks in the new areas such as multi-task optimization and transfer optimization, 

D. Supporting open-source frameworks that assure reproducibility and equitable comparison. 

 

The application of these strict and wide-ranging benchmarking methods will help the 

metaheuristics community continue to be a breeding ground for true innovation and to provide solid 

optimization solutions to the intricate problems of science and technology. 
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