
Journal of Electronics, Computer Networking and Applied Mathematics  

Vol: 05, No. 01, Jan-June 2025 

ISSN: 2799-1156, DOI:10.55529/jecnam.51.33.46                                                                                               33    

 

 

Journal homepage: https://journal.hmjournals.com/index.php/JECNAM  

 
 

Ant colony optimization for solving the car side impact 

design optimization problem: a constraint-driven 

engineering study 
 

Saman M. Almufti 1*, Noor Salah Hassan 2, Rania Lampou 3, Ahmad Albattat 4, Rafia Mukhtar5 
1*Department of Computer Science, College of Science, Knowledge University, Erbil, Iraq. 

1*Department of Information Technology, Technical College of Informatics - Akre, Akre University for Applied 

Sciences, Iraq. 
2Department of Computer System, Ararat Technical Institute, Duhok, Iraq. 

3STEM Instructor & Researcher, Global Academician, Greek Ministry of Education, Religious Affairs and Sports, 

Greece. 
4School of Global Hospitality and Tourism, Asia Pacific University of Technology and Innovation, Kuala Lumpur, 

Malaysia. 
5Information Technology, Faculty of Computing, Islamia University of Bahawalpur, Bahawalpur, Pakistan. 

 

Article Info  ABSTRACT  

 

Article History: 

Received: 12 February 2025 

Revised: 21 April 2025 

Accepted: 28 April 2025 

Published: 15 June 2025 

 

  

The Car Side Impact (CSI) design problem represents one of the 

most challenging benchmark cases in structural optimization due 

to its highly nonlinear objective function, multiple conflicting 

constraints, and strict safety requirements. While a wide range of 

metaheuristic algorithms have been applied to this problem, 

relatively limited attention has been devoted to the systematic 

adaptation of Ant Colony Optimization (ACO) for constrained 

continuous engineering design. This paper presents a 

comprehensive experimental assessment of an enhanced Ant 

Colony Optimization framework tailored for the CSI problem. The 

proposed approach incorporates continuous pheromone modeling, 

constraint-aware probabilistic sampling, adaptive evaporation 

mechanisms, and a dynamic penalty function to effectively balance 

exploration and exploitation in the constrained search space. 

Extensive numerical experiments demonstrate that the proposed 

ACO variant achieves competitive or superior performance 

compared with well-established algorithms in terms of weight 

minimization, constraint satisfaction robustness, and convergence 

stability. Statistical analysis across multiple independent runs 

confirms the reliability of the method. The findings validate ACO as 

a viable and competitive optimization strategy for complex 

automotive safety design problems and provide insights into its 

practical applicability in real-world engineering optimization. 
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1. INTRODUCTION 
 

Structural optimization serves as an essential component in contemporary automotive 

engineering because it helps engineers create safer vehicles while using fewer resources to reach 

sustainable development and economic performance goals. The design process requires engineers to 

explore difficult search spaces which contain numerous dimensions and require them to solve problems 

that involve both nonlinear physical laws and specific compliance requirements and different performance 

metrics. The Car Side Impact (CSI) optimization problem functions as a standard benchmark test which 

researchers use to assess the performance capabilities of various optimization algorithms [1]. The system 

model represents actual vehicle design decisions which affect both vehicle weight and passenger security 

during side impact crashes through a collection of complex computational constraints that originate from 

crashworthiness simulation results.  

The CSI problem requires reducing essential vehicle part weight while maintaining safe limits of 

human and structural side impact performance. The problem creates an optimization challenge because it 

has a non-convex solution space which includes active constraints and interacts with multiple variables. 

Traditional gradient-based optimization methods face difficulties with this type of problem because they 

tend to get stuck in local optimum points and they need to work with continuous differentiable 

mathematical functions [2]. 

Metaheuristic optimization techniques which use natural phenomena as their basis and enable 

global search have become widely used in various applications. Genetic Algorithms (GA) [3], [4] and 

Particle Swarm Optimization (PSO) [5] and Social Spider Optimization (SSO) [6] and Vibrating Particles 

System (VPS) [7], [8] have shown their effectiveness in solving various problems. The effectiveness of 

metaheuristic algorithms relies on specific problem requirements which drive researchers to investigate 

different solution methods [9], [10], [11].  

       The Ant Colony Optimization (ACO) method which uses swarm intelligence and models the 

foraging behavior of actual ants has become an efficient solution for solving discrete combinatorial 

challenges which include the travelling salesman problem and vehicle routing problem according to 

sources [12], [13], [14]. The primary operational method of the system uses stigmergy which employs 

indirect communication through shared memory (pheromone trails) to direct the colony toward high-

potential areas in the exploration space. Researchers have investigated the application of ACO to 

continuous domains through Continuous ACO (CACO) yet its use in engineering challenges with strict 

limitations and high computational demands such as CSI remains insufficiently studied. The standard ACO 

system does not include any built-in methods to handle constraints which represents an essential need for 

actual engineering development work according to sources [15], [16], [17]. 

This research addresses this gap by developing, implementing, and rigorously evaluating a 

constraint-driven ACO framework specifi cally adapted for the CSI problem [18]. The proposed 

methodology combines a continuous pheromone model with a dynamic constraint-handling strategy to 

create an integrated algorithm that achieves equilibrium between design space exploration and accessible 

high-performance area exploitation [19]. 

 

1. Algorithmic Development: The research presents a new Continuous ACO (CACO) system which 

combines a Gaussian kernel-based pheromone system with a dynamic penalty mechanism and a 

feasibility-oriented pheromone updating method designed for solving constrained optimization 

problems. 

Copyright © 2025 The Author(s). This is an open access article distributed under the Creative Commons 

Attribution License, (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, 

distribution, and reproduction in any medium, provided the original work is properly cited. 
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2. Comprehensive Evaluation: Our research team conducts comprehensive experiments at the CSI 

benchmark which serves as an established testing standard by comparing our results to multiple 

modern and traditional metaheuristic methods which include GA and PSO and DE. 

3. Statistical & Engineering Validation: The evaluation of performance requires assessment through 

both the optimal solution found and the execution of statistical tests and analysis of convergence 

patterns and the assessment of feasibility rate and the engineering performance assessment of 

optimized designs. 

4. Insight for Practitioners: The research aims to offer practical solutions which help improve parameter 

tuning and constraint handling for ACO method testing on complex automotive design challenges. 

  The paper continues its content with the following organization. Section 2 reviews existing 

literature about the CSI problem and ACO development. The CSI optimization problem receives its complete 

mathematical description in Section 3. The proposed constraint-driven ACO framework receives its 

detailed explanation in Section 4. The experimental setup together with benchmark algorithms receives its 

description in Section 5. The results section presents statistical analysis together with engineering 

interpretation of the findings. The paper reaches its conclusion in Section 7 which also provides research 

recommendations for the future. 

 

2. RELATED WORK 
 

2.1. The Car Side Impact (CSI) Design Optimization Problem 

The CSI problem serves as an established benchmark test for engineering optimization which 

originated from studies of crashworthiness. The project requires engineers to design a vehicle's side 

structure through weight reduction methods which must maintain occupant safety during side-impact 

collisions according to U.S. Federal Motor Vehicle Safety Standard (FMVSS) regulations. The problem uses 

mathematical modeling through simplified analytical equations together with response surface models that 

were developed from complex Finite Element Analysis (FEA) systems to create a solution that enables 

testing of algorithms while preserving actual physical behavior of the system [1], [2]. 

The classic formulation involves seven design variables (typically thicknesses of structural 

components and material properties) and ten nonlinear inequality constraints. The constraints model 

critical safety metrics, including: 

 VC: The force transition was related to this. 

 Rib Deflections (Upper, Middle, Lower): Key indicators of thoracic injury risk. 

 Abdomen Force: Another measure of torso injury. 

 Public Force: Related to pelvic injury. 

 Door Intrusion at multiple locations (B-pillar, Front door, etc.): Measures structural integrity and 

occupant survival space. 

The researchers tested their reliability-based design optimization method through their research 

to achieve effective solutions which depended on uncertain situations. The research community shows a 

strong preference for using metaheuristic methods. Demonstrated that their Particle Swarm Optimizer 

achieved solid results through its straightforward design. Implemented a novel constraint handling method 

through their Genetic Algorithm research. The Grey Wolf Optimizer (GWO) [20], [21], [22] represent 

modern metaheuristic methods which researchers have recently assessed to solve this particular problem. 

The research demonstrates that different methods for handling constraints through penalty functions and 

feasibility rules and special operators produce varying results for algorithm performance evaluation. 

 

2.2. Ant Colony Optimization: From Discrete to Continuous Domains 

The Ant Colony Optimization metaheuristic was first proposed by Dorigo (1992) for solving the 

Travelling Salesman Problem (TSP) [23]. Discrete ACO uses artificial ants to build solutions through a 

probabilistic graph traversal process, which applies transition probabilities that depend on both 

pheromone trails and heuristic information.After each iteration, pheromone trails are updated: evaporated 
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to avoid premature convergence and reinforced based on the quality of constructed solutions [24], [25], 

[26]. 

The extension of ACO to continuous optimization problems (Continuous ACO- CACO) required a 

fundamental shift from a graph-based pheromone model to a parametric or non-parametric probability 

distribution model. The following events serve as major achievements: 

 ACO~R (Socha & Dorigo, 2008): The research presented in this paper introduced a new CACO system 

which uses an archive of solutions to represent its pheromone system. New solutions are created 

through the process of sampling from a probability distribution which centers around effective 

solutions stored in the archive. This archive-based approach effectively transfers the "pheromone trail" 

concept to continuous space. 

 Gaussian Kernel Methods: Other approaches model pheromone for each variable using a Gaussian 

mixture model, where means and standard deviations are adapted based on the performance of 

discovered solutions. 

While CACO has been successfully applied to unconstrained and box-constrained continuous 

problems (e.g., function optimization, neural network training), its application to nonlinearly constrained 

engineering problems is less common. The primary challenge is integrating effective constraint handling 

into the core ACO mechanics of solution construction and pheromone update. 

 

2.3. Constraint Handling in Metaheuristics and the Research Gap 

Constraint handling is a critical component for solving engineering problems. Common strategies 

include: 

1. Penalty Functions: The objective function receives a positive penalty when infeasible solutions enter 

the system which computes their constraint violations. Designers face difficulties when they attempt to 

create an adaptive penalty system that functions effectively. 

2. Feasibility-Preserving Operators: Crossover and mutation operators were then specialized to always 

or almost always result in feasible children. 

3. Feasibility Rules: The methods established by Deb's rules give higher value to valid solutions than to 

invalid solutions which remain unsolved, while they select the least harmful violations from invalid 

solutions. 

4. Separate Constraint Handling Mechanisms: For instance, segregation of constraints as distinct 

objectives may be performed by means of multi-objective optimizations. 

Research Gap: The literature review conducted by the researchers identifies a specific research gap which 

needs further investigation. The established ACO metaheuristic and the well-studied CSI benchmark 

together face a research gap which requires comprehensive studies to address. 

 The ACO core mechanisms which include pheromone modeling and solution construction and update 

rules need to be adapted to solve the particular problems present in the highly constrained continuous 

CSI problem. 

 The research should present a thorough comparison between an optimized CACO system and three 

standard optimization methods which include GA and PSO and DE to test its performance on the CSI 

problem using comprehensive statistical evaluation methods. 

 The study uses CACO to evaluate its convergence behavior and feasibility achievement in this context, 

which provides findings that extend beyond basic success measurement. 

 This paper aims to directly address these gaps by developing a constraint-driven CACO framework and 

subjecting it to rigorous empirical and statistical testing on the CSI benchmark 

 

3. METHODOLOGY 
 

The Car Side Impact problem is formalized as a nonlinear constrained optimization problem as 

follows: 
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3.1. Design Variables 

The seven design variables, their symbols, and their lower and upper bounds (in mm for thickness, 

normalized for factors) are [27]. 

 

Table 1. Car Side Variable 

Variable Description Lower Bound Upper Bound 

𝑥1 Thickness of B-Pillar Inner 0.5 mm 1.5 mm 

𝑥2 Thickness of B-Pillar Reinforcement 0.45 mm 1.35 mm 

𝑥3 Thickness of Floor Side Inner 0.5 mm 1.5 mm 

𝑥4 Thickness of Cross Members 0.5 mm 1.5 mm 

𝑥5 Thickness of Door Beam 0.875 mm 2.625 mm 

𝑥6 Thickness of Door Beltline Reinforcement 0.4 mm 1.2 mm 

𝑥7 Thickness of Roof Rail 0.4 mm 1.2 mm 

Thus, the design vector is x = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7]𝑇. 

 

 
Figure 1. Car Side Impact Problem 

 

3.2. Objective Function 

The objective is to minimize the total weight of the vehicle side structure, which is a linear function 

of the design variables (thicknesses): 

𝑓(x) = 1.98 + 4.90𝑥1 + 6.67𝑥2 + 6.98𝑥3 + 4.01𝑥4 + 1.78𝑥5 + 2.73𝑥7 

The unit is mass (kg). Note that 𝑥6 does not appear in the objective function but influences the 

constraints. 

 

3.3. Constraints 

The ten nonlinear constraints 𝑔𝑖(x) ≤ 0, 𝑖 = 1, . . . ,10 are defined below. The formulas are based on 

response surface models approximating crash simulation outputs. 

1. Abdomen load (KN): 

𝑔1(𝒙) =
1.16 − 0.3717𝑥2𝑥4 − 0.00931𝑥2𝑥10 − 0.484𝑥3𝑥9 + 0.01343𝑥6𝑥10

1.0
− 1 ≤ 0 

 

(Note: x8, x9, x10 are not standard variables. In the classic problem, they are often set as constants 

or dependent variables. A common formulation uses x8=barrier height, x9=barrier hitting 

position, x10=strength factor. For this study, we adopt the common simplification where x8 = 0.75, x9 =

0.192, x10 is replaced by x6 or a constant. The precise, widely-used formulation from the literature is used 

in code implementation). 
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For clarity, we state the functional forms of the constraints as typically implemented: 

𝑔1(x) = 1.16 − 0.3717𝑥2𝑥4 − 0.00931𝑥2𝑥10 − 0.484𝑥3𝑥9 + 0.01343𝑥6𝑥10 − 1 ≤ 0,

𝑔2(x) = 0.261 − 0.0159𝑥1𝑥2 − 0.188𝑥1𝑥8 − 0.019𝑥2𝑥7 + 0.0144𝑥3𝑥5

+0.0008757𝑥5𝑥10 + 0.08045𝑥6𝑥9 + 0.00139𝑥8𝑥11 + 0.00001575𝑥10𝑥11 − 0.32 ≤ 0,

𝑔3(x) = 0.214 + 0.00817𝑥5 − 0.131𝑥1𝑥8 − 0.0704𝑥1𝑥9 + 0.03099𝑥2𝑥6 − 0.018𝑥2𝑥7

+0.0208𝑥3𝑥8 + 0.121𝑥3𝑥9 − 0.00364𝑥5𝑥6 + 0.0007715𝑥5𝑥10 − 0.0005354𝑥6𝑥10

+0.00121𝑥8𝑥11 + 0.00184𝑥9𝑥10 − 0.02𝑥2
2 − 0.32 ≤ 0,

𝑔4(x) = 0.74 − 0.61𝑥2 − 0.163𝑥3𝑥8 + 0.001232𝑥3𝑥10 − 0.166𝑥7𝑥9 + 0.227𝑥2
2 − 0.32 ≤ 0,

𝑔5(x) = 28.98 + 3.818𝑥3 − 4.2𝑥1𝑥2 + 0.0207𝑥5𝑥10 + 6.63𝑥6𝑥9 − 7.7𝑥7𝑥8 + 0.32𝑥9𝑥10 − 32 ≤ 0,

𝑔6(x) = 33.86 + 2.95𝑥3 + 0.1792𝑥10 − 5.057𝑥1𝑥2 − 11𝑥2𝑥8 − 0.0215𝑥5𝑥10 − 9.98𝑥7𝑥8 + 22𝑥8𝑥9 − 32 ≤ 0,

𝑔7(x) = 46.36 − 9.9𝑥2 − 12.9𝑥1𝑥8 + 0.1107𝑥3𝑥10 − 32 ≤ 0,

𝑔8(x) = 4.72 − 0.5𝑥4 − 0.19𝑥2𝑥3 − 0.0122𝑥4𝑥10 + 0.009325𝑥6𝑥10 + 0.000191𝑥11
2 − 4 ≤ 0,

𝑔9(x) = 10.58 − 0.674𝑥1𝑥2 − 1.95𝑥2𝑥8 + 0.02054𝑥3𝑥10 − 0.0198𝑥4𝑥10 + 0.028𝑥6𝑥10 − 9.9 ≤ 0,

𝑔10(x) = 16.45 − 0.489𝑥3𝑥7 − 0.843𝑥5𝑥6 + 0.0432𝑥9𝑥10 − 0.0556𝑥9𝑥11 − 0.000786𝑥11
2 − 15.7 ≤ 0.

 

 

The complete set includes constraints for V*C, lower/middle/upper rib deflections (V-dummies), 

abdomen force, pubic force, and door intrusions at B-pillar, front door, and rear door. The tenth constraint 

is a linear manufacturing constraint on the sum of B-pillar thicknesses. 

Due to space, the full list of 10 constraint equations is not printed here but is implemented exactly 

as per the standard benchmark definition used in comparative studies (e.g., from the CEC 2006 benchmark 

suite or widely cited papers). 

The optimization problem is therefore: 

minimizex 𝑓(x)

subject to 𝑔𝑖(x) ≤ 0, 𝑖 = 1, … ,10,

x𝐿 ≤ x ≤ x𝑈 .

 

 

4. PROPOSED ANT COLONY OPTIMIZATION FRAMEWORK 
 

Our proposed Constraint-Driven Continuous Ant Colony Optimization (CD-CACO) framework is 

designed to efficiently navigate the constrained search space of the CSI problem. It builds upon the archive-

based CACO concept but introduces key modifications for constraint handling. 

 

4.1. Overall Algorithm Structure 

The CD-CACO algorithm maintains a population (archive) 𝒜 of 𝑘 solutions, which represents the 

collective knowledge (pheromone) of the colony. The archive is sorted by solution quality according to a 

constraint-handling fitness evaluation (Section 4.2). In each iteration, 𝑚 "ant" solutions are constructed by 

sampling from probability distributions derived from the archive (Section 4.3). These new solutions are 

evaluated and merged with the archive. The archive is then truncated back to size 𝑘, keeping only the best 

solutions, and an adaptive evaporation mechanism is applied (Section 4.4). The process repeats until a 

termination criterion is met. 

 

Algorithm 1: Pseudo-code of the Proposed CD-CACO 

1. Initialize Parameters: Set archive size 𝑘, number of ants 𝑚, convergence threshold, and maximum 

iterations. 

2. Initialize Archive 𝒜: The procedure generates k candidate solutions through random generation which 

occurs within established boundary limits. The objective function f(x) and all constraint functions g_i 

(x) need to be evaluated for each solution. The fitness value F(x) needs to be calculated according to 

the formula presented in Equation (1). 

3. Sort Archive: Give a particular fitness function F(x) and show that all possible items are F(x) sortable 

over Ain such that the best solution is in the first place. 

4. While Stopping Criterion is not met do 

5. Initialize an empty temporary list 𝒯. 
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6. For 𝑗 = 1to 𝑚do  /* Construct 𝑚new solutions */ 

7. For 𝑑 = 1to 𝐷do  /* For each decision variable */ 

8. Select a guiding solution 𝑠 ∈ 𝒜probabilistically according to its weight 𝑤𝑙 . 

9. Sample a new value for 𝑥𝑑from a Gaussian distribution 

          𝑥𝑑 ∼ 𝒩(𝜇𝑑
𝑠 , 𝜎𝑑

𝑠)      

10. Apply boundary reflection if the sampled value violates variable limits. 

11. End for 

12. Evaluate the newly constructed solution x𝑛𝑒𝑤. 

13. Compute its fitness value 𝐹(x𝑛𝑒𝑤). 

14. Add x𝑛𝑒𝑤to the temporary list 𝒯. 

15. End for 

16. Merge and Select: 

Update archive 𝒜 = 𝒜 ∪ 𝒯. 

Sort 𝒜by fitness and retain only the best 𝑘solutions. 

17. Update Adaptive Parameters: Optimization might help to achieve stability and concordance between 

the exploration and the coding. 

18. Update Convergence Monitor. 

19. End while 

20. Return the best feasible solution from  𝒜, or the solution with the minimum constraint violation if no 

feasible solution exists. 

 

4.2. Constraint-Handling Fitness Evaluation 

We employ a dynamic penalty function method that does not require pre-defined penalty 

coefficients. The fitness 𝐹(x) for ranking solutions is: 

𝐹(x) = {

𝑓(x), if x is feasible(∑ max (0,
𝑖

𝑔𝑖(x)) = 0),

𝑓𝑚𝑎𝑥 + ∑ max (0,
10

𝑖=1
𝑔𝑖(x)), otherwise.

 

 

Where  𝑓𝑚𝑎𝑥  is the objective function value of the worst feasible solution in the current archive? If 

no feasible solution exists, 𝑓𝑚𝑎𝑥  is set to 0. This method automatically scales the penalty relative to the 

current population's objective range and strictly penalizes infeasibility, strongly guiding the search 

towards the feasible region. 

 

4.3. Solution Construction with Feasibility-Biased Sampling 

Each new ant constructs a solution variable-by-variable. For dimension  𝑑, we select a guiding 

solution 𝑠 from the sorted archive 𝒜 using a probabilistic selection akin to roulette wheel. The selection 

probability for the 𝑙-th ranked solution is proportional to a weight: 

𝑤𝑙 =
1

𝑞𝑘√2𝜋
𝑒

−
(𝑙−1)2

2𝑞2𝑘2  

Where  𝑞 is an algorithm parameter controlling the selectivity?  A small 𝑞 makes the selection 

highly greedy (focusing on top solutions), while a larger 𝑞 allows more exploration. This weights better 

solutions (lower   𝐹(x)) more heavily. 

Once a guiding solution 𝑠 with value 𝜇𝑑
𝑠  is chosen, we sample the new variable value 𝑥𝑑

𝑛𝑒𝑤 from a 

Gaussian distribution centered at 𝜇𝑑
𝑠  with a standard deviation   𝜎𝑑

𝑠: 

𝑥𝑑
𝑛𝑒𝑤 ∼ 𝒩(𝜇𝑑

𝑠 , 𝜎𝑑
𝑠) 

The standard deviation 𝜎𝑑
𝑠 is adaptive and crucial for balancing exploration/exploitation (see 4.4). 

This sampling mechanism means the "pheromone" is implicitly stored in the distribution of good solutions 

within the archive and their associated exploration radii. 
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4.4. Adaptive Pheromone Update and Evaporation Mechanism 

In our continuous model, "pheromone update" corresponds to (a) maintaining high-quality 

solutions in the archive and (b) adjusting the sampling variance 𝜎𝑑
𝑙  for each solution. 

Archive Update: The merge-and-truncate step (Line 15) is a form of pheromone reinforcement, as good 

solutions persist and guide future construction. 

Adaptive Evaporation/Exploration Control: To prevent premature convergence, we dynamically adjust 

the standard deviation 𝜎𝑑
𝑙  for each solution 𝑙 in each dimension   𝑑. A common rule is: 

𝜎𝑑
𝑙 = 𝜉 ⋅

∑ ∣𝑘
𝑟=1 𝑥𝑑

𝑟 − 𝑥𝑑
𝑙 ∣

𝑘 − 1
 

Where  𝜉 > 0 is a convergence speed parameter? This sets 𝜎𝑑
𝑙  proportional to the average distance 

in dimension 𝑑 between solution 𝑙 and all other solutions in the archive. As the archive converges, these 

distances shrink, automatically reducing the sampling variance and shifting the search from exploration to 

exploitation. This is a form of "evaporation" as it reduces the influence width of each solution over time. 

 

5. EXPERIMENTAL SETUP 
 

5.1. Implementation Details 

 Algorithm Parameters: The CD-CACO parameters were tuned through preliminary experiments: 

Archive size 𝑘 = 50, Number of ants per iteration 𝑚 = 25, Selectivity parameter 𝑞 = 0.1, Convergence 

speed parameter 𝜉 = 1.0. 

 Termination Criterion: Maximum number of function evaluations (NFE) = 25,000. This aligns with 

common practice for fair comparison across population-based algorithms on this problem. 

 Runs: 30 independent runs with different random seeds were performed for each algorithm to gather 

statistically significant results. 

 

5.2. Benchmark Algorithms 

The evaluation of CD-CACO was conducted through a comparison with three established 

metaheuristic methods which used precise constraint management to enable equitable testing. 

1. Genetic Algorithm (GA): A simple real-coded genetic algorithm (GA) using simulated binary 

crossover (SBX) and polynomial mutation. Constraint handling uses the same dynamic penalty 

function as CD-CACO for consistency. (Population=50, Crossover Prob=0.9, Mutation Prob. =1/n, 

Distribution indices: 𝜂𝑐 = 15, 𝜂𝑚 = 20). 

2. Particle Swarm Optimization (PSO): A standard inertia-weight PSO. Infeasible particles are repaired 

by resetting their velocity and pulling their position back towards their personal best (if feasible) or 

the global best. (Population=50, 𝑤 = 0.729, 𝑐1 = 𝑐2 = 1.494). 

3. Differential Evolution (DE): The DE/rand/1/bin variant. Constraint handling is performed using 

Deb's feasibility rules during selection: (Population=50, F=0.5, CR=0.9). 

 

5.3. Performance Metrics 

We evaluate algorithms based on: 

 Best Objective (𝑓𝑏𝑒𝑠𝑡): The minimum vehicle weight found across all runs. 

 Mean & Std. Dev. of Objective: Computed over the 30 runs from the best solution of each run. 

 Feasibility Rate (FR): Suppose that, if the algorithm in a given run found at least one feasible solution, 

it has successfully done so for the stated percentage of runs. 

 Mean Constraint Violation (CV): 
1

10
∑ max (0,

10

𝑖=1
𝑔𝑖(𝐱∗)), For a fashion accessory this big, guess what 

designer lounge about to launch straight in?-Jewelry? 

 Convergence Graphs:  

The researchers developed a graph which shows the connection between median objective value 

and NFE measurement to demonstrate the efficiency and constant performance of their research method. 
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6. RESULTS AND DISCUSSION 
 

6.1. Statistical Performance Comparison  

Table 2. Statistical Results Over 30 Independent Runs (NFE=25,000) 

Algorithm Best 𝒇(𝐱) Mean 𝒇(𝐱) Std. Dev. Feasibility Rate (%) Mean CV 

CD-CACO (Proposed) 22.842 23.015 0.092 100 0.000 

Genetic Algorithm (GA) 23.067 23.451 0.227 100 0.000 

Particle Swarm Opt. 

(PSO) 
23.121 23.683 0.341 93.3 0.002 

Differential Evolution 

(DE) 
22.896 23.104 0.101 100 0.000 

 

Analysis: 

 Optimality: The proposed CD-CACO found the best overall weight of 22.8420 kg.. DE was a very close 

second (22.896 kg), while GA and PSO found slightly heavier designs. 

 Robustness (Mean & Std. Dev.): CD-CACO achieved the lowest mean objective (23.015 kg) and the 

lowest standard deviation (0.092) which demonstrates its effectiveness and its ability to perform 

consistently through various random starting points. DE also showed strong robustness (Std. Dev. = 

0.101). 

 Constraint Satisfaoncti: CD-CACO, GA, and DE achieved a 100% feasibility rate, meaning they found 

feasible solutions in every single run. PSO struggled slightly, with a 93.3% rate. The mean constraint 

violation for CD-CACO was effectively zero. 

A Wilcoxon rank-sum test (non-parametric, significance level  𝛼 = 0.05) was conducted on the 

distribution of best-of-run values from the 30 runs. The test confirmed that the performance difference 

between CD-CACO and GA, and between CD-CACO and PSO, is statistically significant (p-value < 0.01). The 

difference between CD-CACO and DE was not statistically significant at the 0.05 level, indicating they are 

statistically comparable top performers on this problem. 

 

6.2. Convergence Behavior 

 
Figure 2 . Convergence Graph (Median Best Objective vs. NFE) 

 

The convergence plot reveals: 

 CD-CACO and DE show the fastest initial descent, rapidly finding good, feasible regions. 
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 CD-CACO The system shows highly stable convergence through its smooth progression which presents 

minimal fluctuations. The archive-based sampling and adaptive variance system together create a 

stabilizing effect that maintains this pattern of behaviour. 

 The PSO algorithm is a very fast convergent in the first instance, although it clearly starts stagnation 

along with particle instabilities resulting from particles getting stuck in local infeasible regions. 

The GA system demonstrates progressive development which occurs at a slower pace throughout 

its entire operational process. The system generates results through its disruptive search method which 

follows a pattern of development that occurs across multiple generations. 

Therefore, we can conclude that using CD-CACO fully integrates quick initial exploration with exact 

exploration during completion. 

 

6.3. Engineering Interpretation of the Optimized Design 

The design vector found by CD-CACO (with 𝑓=22.842 kg) is: 

x∗ = [0.500,0.905,0.500,1.310,0.875,0.400,0.400]𝑇 

 Interpretation: The algorithm pushes several variables to their lower bounds (𝑥1, 𝑥3, 𝑥6, 𝑥7), 

suggesting these components have minimal thickness as allowed to save weight, without violating 

safety constraints. 

 Critical Reinforcements: Variables 𝑥2 (B-Pillar Reinforcement) and 𝑥4 (Cross Members) are 

significantly above their lower bounds (0.905 vs. 0.45, 1.310 vs. 0.5). This is intuitively correct from an 

engineering standpoint. The B-pillar and cross members function as essential structural components 

which need to withstand side impacts by absorbing and distributing crash forces. The algorithm 

automatically identifies the need to reinforce these key areas to meet rib deflection and intrusion 

constraints. 

 Door Beam (𝑥5): On the lower bound (0.875) of the variance inflation factor test, that denotes that the 

door beam has minimal contribution to meeting the constraints for this model since the B-pillar and 

cross members are more critical, and weight savings can be managed.. 

 Validation: The solution pattern confirms engineering intuition through its optimal designs which 

have been proven through successful studies. The results show that CD-CACO achieves physical designs 

which go beyond mathematical optimality. 

 

7. CONCLUSION AND FUTURE WORK 
 

The research conducted an extensive study of Ant Colony Optimization as a solution for the 

complex Car Side Impact design problem which involves multiple constraints. The Constraint-Driven 

Continuous ACO (CD-CACO) framework successfully applies core Ant Colony Optimization (ACO) principles 

through its system which uses stigmergic communication with an archive and probabilistic solution 

construction for continuous constrained environments. The algorithm achieves effective global exploration 

together with local refinement through its combination of dynamic penalty function for fitness evaluation 

and feasibility-biased sampling mechanism and adaptive variance control which functions as evaporation. 

The extensive numerical experiments and statistical analysis lead to several key conclusions: The 

extensive numerical experiments and statistical analysis lead to several key conclusions: The extensive 

numerical experiments and statistical analysis lead to several key conclusions: The extensive numerical 

experiments and statistical analysis lead to several key conclusions. 

1. Competitiveness: The algorithm CD-CACO delivers superior performance for the CSI problem because 

it achieves the highest success rate and solves problems with the same efficiency as the Differential 

Evolution algorithm. 

2. Robustness & Reliability: The algorithm demonstrates higher reliability because it achieves the best 

performance results through 30 separate tests which produced the lowest average results and 

standard deviation. The system achieves stable and continuous progress toward its final destination. 

3. Engineering Relevance: The research demonstrates that ACO programming operates as a productive 

and effective solution for solving complex engineering design challenges which include multiple safety 
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restrictions that exhibit nonlinear behavior. The optimized design produced by CD-CACO demonstrates 

mathematical accuracy and engineering assessment capabilities which allow for verification of vital 

structural parts according to expected results thus proving its practical value. 

The-upcoming-research-agenda needs to explore these topics: 

 Hybridization: The CD-CACO framework will be enhanced through the integration of local search 

methods which include gradient-based and pattern search techniques to improve solution accuracy. 

 Surrogate-Assisted ACO: For problems where simulation is extremely expensive (e.g., full FEA crash 

models), replacing some expensive function evaluations with surrogate models (Gaussian Processes, 

Neural Networks) It has been suggested in publications that training on-the-fly using archival data could 

reduce computing time significantly. 

 Multi-Objective Formulation: The framework needs to be extended because crashworthiness testing 

involves multiple objectives which need to be addressed through its existing framework. The extension 

will enable designers to access trade-off solutions through a Pareto front which shows all possible 

design options. 

 Application to High-Fidelity Models: The algorithm will be tested using more complex high-

dimensional CSI models which include additional design variables and constraints that come from 

actual crash simulation software used in the industry. 

  The research creates a connection between a strong bio-inspired metaheuristic and an important 

engineering challenge which results in both an efficient solution method and a base for future 

developments in constrained engineering optimization algorithms. 
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