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Abstract: We go over the thermal characteristics of graphene, few-layer graphene, and 

graphene nanoribbons, and we go over some real-world uses for graphene in energy 

storage and thermal control. The first section of the paper discusses the most recent 

developments in the graphene thermal area with an emphasis on the experimental and 

theoretical data on heat conduction in graphene and graphene nanoribbons that have 

recently been published. In the summary, the effects of the sample's size, shape, quality, 

strain distribution, isotope composition, and point-defect concentration are discussed. The 

thermal characteristics of materials used in energy storage that have been increased by 

graphene are described in the second section of the review. It has been established that the 

usage of liquid-phase-exfoliated graphene as a filler in phase change materials has 

promise for the thermal control of high-power density battery parks. The experimental and 

modelling findings have been disclosed. 

 

Keywords: Graphene, Thermal Properties, Experiments and Modelling. 

 

1. INTRODUCTION 

 

In this study, we cover the thermal characteristics of graphene, few-layer graphene (FLG), 

and graphene nanoribbons (GNR), and we give an illustration of how graphene is used in 

materials that undergo thermal  

 

phase changes (PCM). While considering graphene thermal applications, we frequently refer 

to single layer graphene (SLG), bilayer graphene (BLG), and fullerene (FLG) layers as 

graphene. The latter is true because there is less of a distinction between SLG and FLG in 

thermal applications than there is in electronic ones. It can be challenging to tell FLG from 

http://journal.hmjournals.com/index.php/JEET
http://journal.hmjournals.com/index.php/JEET
https://doi.org/10.55529/jeet.35.19.24
http://creativecommons.org/licenses/by/4.0/


Journal of Energy Engineering and Thermodynamics 

ISSN:  2815-0945  

Vol: 03, No. 05, Aug - Sep 2023 

http://journal.hmjournals.com/index.php/JEET 

DOI: https://doi.org/10.55529/jeet.35.19.24 

 

 

 

 

Copyright The Author(s) 2023.This is an Open Access Article distributed under the CC BY 

license. (http://creativecommons.org/licenses/by/4.0/)                                                            20 

graphite films or FLG from graphite nano-platelets (GnP) utilised in composite materials. 

The technical definition of SLG is an atomic plane of carbon that is connected to sp2.  

 

2. METHODOLOGY 

 

Mobile communications, consumer electronics, and the automotive industry have all 

advanced thanks to the development of high-power-density batteries, such as Li-ion batteries 

[14,15,16]. Li-ion battery performance suffers when temperature rises over the normal 

working range. The battery could explode, experience cell rupture, or experience thermal 

runaway if it becomes too hot [17,18,19].  High-power density ion battery packs typically 

include thermal PCMs as part of their thermal management strategy. They lower the 

temperature rise in the battery by storing latent heat and changing phases across a narrow 

temperature range [20, 21, 22]. The usual K values for common PCMs at room temperature 

range from 0.17 to 0.35 W/mK [23]. Si and Cu have thermal conductivities at room 

temperature (RT) of about 145 and 381, respectively. Standard PCMs 

 

3. RESULTS & DISCUSSION 
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By measuring the integrated Raman intensity of the G peak [4,5] or using a detector 

positioned beneath the graphene [32,33], one can measure  

the amount of heat dissipated in graphene. Since the optical absorption of graphene is 

wavelength dependent  [1,2,34,35,36] and is influenced by strain, defects, and multiple 

reflections for graphene hung over trenches, it is important to quantify the optical absorption 

under the precise experimental circumstances. The many-body effects are responsible for the 

dependence of  the graphene light absorption on wavelength [34,35,36]. The thermal 

conductivity value is obtained by solving the heat diffusion equation for graphene samples 

with a specific geometry based on a correlation between T and P. To determine P, one needs 

to look at the graphene's suspended region. 

 

4. CONCLUSION 

 

The use of graphene-enhanced PCMs as energy storage for thermal control in battery packs  

is demonstrated in this section by way of a concrete example [29].  Increasing PCM's thermal 

conductivity without lowering its  capacity to store latent heat was the aim of this application. 

The battery  packs were made up of cylinder-shaped Li-ion batteries that were joined to a 

charging-discharging system that provided continuous  charging-discharging cycles of 16A  

and 5A, respectively. Temperature readings were recorded throughout the predetermined 10 

charge-discharge cycles utilising installed thermocouples and a data gathering system at 

predetermined time intervals (DAS). A battery cylinder inside the battery pack had two 

thermocouples attached to the cathode and anode ends, and a third thermocouple was linked 

to the battery pack shell, which served as the heat source. A thin sheet of pure carbon that is  

linked and packed closely together to form a hexagonal honeycomb structure is known as 

graphene. It is recognised as a "wonder material" since it possesses a variety of astounding 

qualities, including being the best conductor and the thinnest compound known to man (one 

atom  thick). Because carbon is abundant in nature and is a component of human tissue, it 

possesses incredible  strength and light absorption qualities and is even regarded as 

environmentally beneficial and sustainable Because of its large relative surface area (which is 

even larger than that of activated carbon), graphene is frequently offered as an alternative  
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