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Abstract: Traditional methods struggle to find faults in power transmission lines. This 

paper presents an approach for short transmission lines, leveraging the power of wavelet 

transforms. Traditional methods analyze time-domain signals, limiting their ability to 

differentiate fault transients. Wavelet transforms, offering a combined time-frequency 

analysis, provide a deeper understanding of these transients. A detailed short transmission 

line model is built in SIMULINK. Diverse fault scenarios are meticulously simulated, and 

current signals undergo wavelet transform analysis. Key features extracted from the 

wavelet coefficients act as fingerprints of potential faults. These features are then utilized 

to develop a robust fault detection algorithm specifically designed for short transmission 

lines. The proposed method promises enhanced fault detection capabilities compared to 

existing techniques in this domain. The results, presented in subsequent sections, will shed 

light on the effectiveness of wavelet transforms in empowering smarter and more reliable 

transmission line operations. 

 

Keywords: Fault Detection, Short Transmission Lines, Wavelet Transform, Simulink, 
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1. INTRODUCTION  

 

Modern society thrives on a continuous and dependable supply of electricity. Disruptions 

caused by faults in power systems can have severe consequences, ranging from equipment 

damage and economic losses to widespread blackouts. Early and accurate fault detection is 

paramount for minimizing such negative impacts and ensuring a reliable power grid [1]. 
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1.1.Limitations of Traditional Fault Detection Methods 

Conventional fault detection techniques primarily analyze current or voltage signals within 

the time domain. While effective in some scenarios, these methods encounter limitations 

when dealing with complex fault types or noisy environments in short transmission lines. 

Distinguishing between actual faults and transient disturbances becomes challenging, 

potentially leading to missed detections or false alarms. 

 

1.2. Wavelet Transforms Analysis 

The adoption of wavelet transform (WT) in real-world power system operations has attracted 

considerable interest. This signal processing method has found applications across various 

domains including image processing, load prediction, and power quality event categorization. 

WT proves to be a robust technique for breaking down a signal into its frequency 

constituents, enabling the concurrent examination of time and frequency aspects in transient 

signals. In contrast to Fourier analysis, which struggles with non-stationary signals, WT 

preserves temporal details, rendering it versatile for a multitude of tasks [2].  

A wavelet has an average of 0 and is an integral of: 

∫ 𝜑(𝑥)𝑑𝑥 = 0      … … … … … … … … … … … … … … … … . (1)
+∞

−∞

 

In wavelet transform (WT), a pivotal element is the wavelet function, commonly known as 

the mother wavelet. Unlike Fourier analysis, which relies on fixed sinusoidal functions, WT 

employs wavelet functions with adjustable attributes like Daubechies, Haar, Coiflet, and 

Symlet, among others. The depiction of a signal in the time-frequency domain through 

functional representation is termed a WT. 

Permanent Wavelet An explanation of a signal’s transform is given as:  

𝑊𝑇𝜑 𝑍(𝑏, 𝑐) =  
1

√|𝑏|
∫ 𝑧(𝑥)𝜑𝑚,𝑛

+∞

−∞

(
𝑡 − 𝑐

𝑏
) 𝑑𝑥    … … … … … … … … . (2) 

The Continuous Wavelet Transform (CWT) expresses a signal's transformation through an 

integral involving scale and translation parameters, as depicted in equation 2. To alleviate the 

computational complexity linked with CWT, the Discrete Wavelet Transform (DWT) was 

introduced. DWT operates with scale and position values that adhere to powers of two, 

enabling more efficient computation [3]. 

The discrete wavelet transform (DWT) simplifies the computational burden by utilizing scale 

and position values based on powers of two, also known as dyadic expansions and 

translations. 

𝐷𝑊𝑇(𝑝,𝑞)

=  ∫ 𝑧(𝑥)  𝜑𝑝,𝑞 (𝑥)𝑑𝑥    … … … … … … … … … … … … … … … … … … … … … … … . . (3)

+∞

−∞

 

𝜑𝑝,𝑞(𝑥) =  𝑎1

−
𝑝
2

(𝑡 − 𝑛𝑏1
𝑝𝑐1)

𝑏1
𝑝 … … … … … … … … … … … … … … … … … … … … … … … … (4) 

Here, 𝑎 =  𝑏1
𝑝 𝑎𝑛𝑑 𝑏 =  𝑞𝑏1

𝑝𝑐1   
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m and n, standing for frequency localization and temporal localization, respectively, are used 

to represent x in this situation. Multi-resolution analysis (MRA) is built on the couple 

orthogonal WT, which is typically produced when p2 = 2 and q1 = 1 [4]. In this study, a 

wavelet is employed to detect abnormalities in the three-phase compensation circuit. The 

Daubechies wavelet, specifically Db4, is utilized for fault identification due to its desirable 

characteristics such as low signal distortion and fast response. By using this approach, 

various faults, including line-to-ground (LG), line-to-line-ground (LLG), and three-phase 

faults, can be accurately detected. The results demonstrate the effectiveness, reliability, 

speed, and accuracy of the system. 

Fig. 1: Wavelet Multi-Resolution Analysis (MRA) 

 

2. RELATED WORKS 

 

Extensive research has been conducted on various fault detection methods in power systems, 

with a focus on improving their effectiveness, especially for short transmission lines. Here, 

we delve into some prominent approaches and their limitations: 

Impedance-Based Techniques: These methods, such as those presented in analyzing changes 

in system impedance during fault conditions. While simple to implement, they struggle with 

differentiating between fault types in short transmission lines. The lower impedance changes 

in these lines compared to longer lines can lead to misinterpretations. Additionally, system 

parameter variations can further impact their accuracy. Synchronized Phasor Measurement 

(PMU) Based Techniques: PMUs provide high-resolution voltage and current phasor data, 

enabling fast and accurate fault detection, as demonstrated in. However, the cost and 

complexity of deploying PMUs limit their widespread application. This becomes particularly 

relevant for short transmission lines, where cost-effectiveness is often a primary concern [5]. 

Artificial Neural Networks (ANNs): ANNs offer a data-driven approach for fault detection, 
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capable of learning complex patterns from historical data, as explored in. However, they 

require significant training data and computational resources. This can be a challenge for 

short transmission lines where data availability might be limited, especially for less frequent 

fault scenarios [6], [7]. Signal Processing Techniques: Recent research has explored the 

application of various signal processing techniques for fault detection in short transmission 

lines. These techniques aim to extract features from voltage and current signals that are 

indicative of faults. For instance, researchers in investigate the use of Discrete Fourier 

Transform (DFT) for fault classification. However, DFT offers limited time-frequency 

resolution, making it challenging to distinguish between fault transients and other system 

disturbances, particularly in short lines with fast transients [8]. 

Literature review:  Kim et al. (2002) proposed a novel fault-detection technique for high-

impedance faults in transmission lines using wavelet transform. Their method is robust to 

various fault conditions and achieves accurate detection through a combination of wavelet 

decomposition and fault criteria [9]. Dash et al. (2007) proposed a support vector machine 

(SVM) based method for fault classification and section identification in transmission lines 

with Thyristor-Controlled Series Compensator (TCSC). This method achieves fast and 

accurate classification using post-fault current samples and firing angle as input features [10]. 

Yadav and Dash (2014) reviewed various artificial neural network (ANN) techniques for 

fault detection, classification, location, and direction discrimination in transmission lines. 

Their survey can be a valuable resource for researchers interested in ANN-based transmission 

line protection techniques [11]. Jamil et al. 2015 proposed a neural network-based method for 

fault detection and classification in electrical power transmission lines. Their method 

achieved satisfactory performance using three-phase voltage and current data as inputs [12]. 

Flores et al. (2016) proposed a neural network-based fault diagnosis system for power 

systems. This modular approach assigns a neural network to each component (transmission 

line, bus, transformer) for fault detection and leverages various data sources like switch/relay 

states, voltage/current oscillograms, and frequency spectrums [13]. Ray and Mishra (2016) 

proposed a fault classification and location method for long transmission lines using support 

vector machines (SVM) with wavelet packet transform for feature extraction. Their method 

achieved high accuracy (over 98%) for fault type and distance estimation [14]. Ferdowsi et al. 

(2017) proposed a passive HIF detection method using Real-time Complexity Measurement 

(RCM) of load voltage data in a microgrid. This method offers easy implementation and 

avoids power quality issues [15]. Zormpas et al. (2018) investigated using Unmanned Aerial 

Vehicles (UAV) and basic image processing for power line inspection. Their method offers a 

cost-effective solution for transmission line inspection and fault detection [16]. Yetgin et al. 

(2019) proposed using convolutional neural networks (CNNs) for power line detection in 

aerial images. They achieved significant improvements by pre-training the CNN on the 

ImageNet dataset, demonstrating the effectiveness of pre-training for even basic image 

recognition tasks [17]. Tao et al. (2020) proposed a deep CNN cascade architecture for 

insulator defect detection in aerial images. Their method achieves high accuracy (precision 

0.91, recall 0.96) and robustness to various conditions using data augmentation techniques 

[18]. Jiang (2020) proposed a data-driven fault location method for distribution systems with 

distributed generations (DGs) using smart meters and remote fault indicators. This method 

leverages outage reports and overcurrent notifications to pinpoint faulty line sections [19]. 
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Belagoune et al. (2021) proposed deep learning models using Long Short-Term Memory 

(LSTM) networks for fault detection, classification, and location in large power systems. 

Their approach utilizes pre- and post-fault data from PMUs to achieve high accuracy and 

robustness [20]. Jiang (2021) proposed a data-driven probabilistic fault location method for 

distribution systems that incorporates data uncertainties from various sources (relays, IEDs, 

SCADA, smart meters) to provide a list of potential fault locations with probabilities, aiding 

decision-making for faster fault isolation and restoration [21]. In a recent study by Ahmed et 

al. (2023), Discrete Wavelet Transform (DWT) was investigated for fault detection in 

overhead transmission lines. Their findings suggest that DWT combined with a classification 

algorithm can be a promising tool for real-time fault detection and classification [22]. Basher 

et al. (2024) proposed a fault classification and localization method for microgrids using 

Discrete Wavelet Transform (DWT) and multi-machine learning techniques with promising 

accuracy for advanced microgrid protection systems [23]. 

 

Background & Motivation 

Reliable power delivery necessitates early fault detection. Traditional time-domain methods 

struggle with complex faults and noisy environments, especially in short transmission lines 

with fast transients. This can lead to missed detections or false alarms. This paper proposes a 

novel approach utilizing wavelet transforms for improved fault detection in short 

transmission lines. Wavelets offer combined time-frequency analysis, potentially overcoming 

the limitations of traditional methods. 

 

Objectives 

1. Develop a comprehensive short transmission line model in SIMULINK. 

2. Simulate diverse fault scenarios. 

3. Apply wavelet transform analysis to extract key features. 

4. Develop a robust fault detection algorithm based on extracted features. 

 

3. METHODOLOGY 

 

The proposed methodology employs a multi-step approach, focusing on a short transmission 

line scenario and combining a simulated power system model with the power of wavelet 

transforms: 

 

Power System Modeling in SIMULINK: 

A detailed power system model is meticulously constructed in SIMULINK, specifically 

representing a short transmission line. This model incorporates various components like  
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Generators, transformers, Three-Phase Series RLC Branch, and loads, ensuring it reflects the 

characteristics of a short transmission line system. The model parameters, including line 

length and voltage level, are chosen to be within the range typically considered for short 

transmission lines (generally less than 80 kilometers and voltage less than 20 kV). This 

ensures the study focuses on the behavior of faults in such systems. The frequency used in 

this model is 60 Hz. 

Fig. 2: Stimulated Model of Short Transmission Line using Wavelet Transform 

 

Load Fault Detection and Measurement using Wavelet Transform Algorithm: 

The MATLAB software, renowned for its effectiveness in power system analysis and 

simulation, serves as the foundation for implementing the algorithm [24]. Its versatility in 

signal processing and algorithmic development renders it an ideal choice for this particular 

research endeavor. Within MATLAB-Simulink, the simulation studies take place, allowing 

for the intricate modeling and simulation of power systems to be conducted with precision. 

The wavelet transform algorithm dissects the load signal into distinct frequency bands, 

facilitating the scrutiny of localized alterations within the signal [25]. Through the analysis of 

wavelet coefficients' attributes, fault conditions such as voltage sags, swells, interruptions, 

and harmonics can be discerned and assessed. Additionally, the algorithm accommodates 

fluctuations in fault resistance and location, thereby augmenting the precision of fault 

detection and measurement processes. 

 

The wavelet transform algorithm's effectiveness is evaluated through performance metrics 

including detection accuracy, false alarm rate, and computational efficiency. Testing is 

conducted on short transmission lines, a well-established benchmark system in power system 

analysis. Simulation outcomes vividly illustrate the algorithm's adeptness in precisely 

detecting and quantifying load faults across diverse operational scenarios. 
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Fig. 3: Flow Chart for Fault Detection Procedure using Wavelet Transform 

 

 

Fault Analysis: 

After performing the process in Simulink using wavelet transform, we have obtained some 

data, which are given below: 

The table displays the maximum values of detailed coefficients extracted from the wavelet 

decomposition of current signals for phases A, B, C, and the ground. Each row corresponds  

To a specific fault scenario, including three-phase faults, double-line-to-ground faults, and 

single-line-to-ground faults in different phases, line-to-line faults, and a normal system. The 

maximum coefficient values provide crucial insights into the severity and type of faults 

present in the power system, aiding in fault diagnosis and mitigation strategies. 
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Table 1: Maximum Value of Detailed Coefficients of all Phases and Ground Current for 

Different Faults 

 

4. RESULTS AND DISCUSSION  

 

The outcomes obtained from the SIMULINK simulations explore their significance for fault 

detection in short transmission lines using wavelet transforms. 

Fig. 4: Wavelet Transform Training Outcomes 

 

Single-phase to ground (L – G) fault, commonly referred to as a single-phase to ground fault, 

typically arises from insulation failure between one of the phases and the earth within a 

http://journal.hmjournals.com/index.php/JEET
http://journal.hmjournals.com/index.php/JEET
https://doi.org/10.55529/jeet.43.12.25
http://creativecommons.org/licenses/by/4.0/


Journal of Energy Engineering and Thermodynamics 

ISSN 2815-0945 

Vol: 04, No. 03, April-May 2024   

http://journal.hmjournals.com/index.php/JEET 

DOI: https://doi.org/10.55529/jeet.43.12.25 

 

 

 

 

Copyright The Author(s) 2024.This is an Open Access Article distributed under the CC BY 

license. (http://creativecommons.org/licenses/by/4.0/)                                                            20 

power system. This type of fault is prevalent, with a likelihood of occurrence ranging from 

70% to 80%. 

 

A.   Single-phase to Ground (L – G) Fault: 

 

B.   Single-phase to Phase (L – L) Fault: 

Fig. 6: Line to Line (L – L) Fault Graph 

 

This fault is also known as a phase-to-phase fault, arising from the short-circuiting of two 

conductors within the system. Heavy winds are the primary catalyst for this fault, as they can 

cause line conductors to swing and potentially come into contact, leading to a short circuit. 

The probability of phase-to-phase faults occurring in power systems is estimated to be around 

15% to 20%. 
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C.   Double-phase to Ground (L – L – G) Fault: 

Fig. 7: Double Line to ground (L – L – G) Fault Graph 

 

This fault involves insulation breakdown between two phases and the earth, alternatively 

known as a line-to-line-to-ground fault or a two-phase-to-ground fault. Although it is one of 

the more severe types of faults, it is infrequent in power systems. The likelihood of such 

faults occurring is approximately 10%. 

 

D.   Three-Phase Line (L – L – L) Fault: 

Fig. 8: Line to Line to Line (L – L – L) Fault Graph 

 

This fault primarily arises from insulation failure across all three phases, constituting the 

most severe type of fault in power systems. Its occurrence rate is minimal, ranging from only 

2% to 3%. However, it plays a crucial role in short circuit calculations, as it involves the 

largest short circuit current. Consequently, it is instrumental in determining the selection of 

protective devices and circuit breakers. 
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E.   Three-Phase to Ground (L – L – L – G) Fault: 

Fig. 9: Three-phase line to the ground (L – L – L – G) Fault Graph 

 

This fault represents the most severe type and is exceedingly rare within power systems. It 

arises from insulation breakdown across all phases, including to the earth. Its occurrence rate 

within power systems is typically between 2% to 3%. 

 

5.   CONCLUSION    

 

This study has explored the application of Wavelet Transform for fault detection in power 

systems using a SIMULINK-based implementation. The findings underscore the 

effectiveness of Wavelet Transform in accurately detecting various faults, highlighting its 

adaptability to non-stationary signals and robustness. These results contribute to the 

advancement of fault detection techniques in power systems, emphasizing the potential for 

improved reliability and operational integrity. 
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