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Abstract: In the realm of document security, signature verification stands as a vital pillar 

for establishing authenticity. This study delves into the utilization of the potent Big 

Transfer (BiT) BiT-M-R50x1 model for the intricate task of signature validation. This 

dataset encompasses 2149 signature images sourced from diverse individuals, exhibiting 

notable fluctuations in writing styles, pen pressures, and signature dimensions. By 

harnessing the prowess of the pre-trained BiT-M-R50x1 model, renowned for its domain-

generalization capability, we fine-tune it to excel in signature verification. The results of 

our approach unveil remarkable accomplishments on the dataset, yielding a validation 

accuracy of 98.60%. The meticulously calibrated BiT-M-R50x1 model adeptly 

distinguishes between authentic and counterfeit signatures, even when confronted with 

substantial variation. Through the mechanism of transfer learning, the model captures 

intrinsic attributes that extrapolate effectively to previously unseen signature specimens. 

Furthermore, we meticulously assess the model's performance concerning the dataset's 

distinctive signature idiosyncrasies, scrutinizing its adaptability to diverse styles and 

dimensions. This experiment underscores the potential of harnessing robust pre-trained 

models like BiT-M-R50x1 for signature verification undertakings, particularly when 

grappling with intricate and heterogeneous datasets. 

 

Keywords: Signature Verification, Big Transfer, BiT-M-R50x1, Biometric Authentication, 

Electronic Signatures. 

 

1. INTRODUCTION 

 

Numerous versions of biometric methods have emerged for personal identification purposes 

[1]. Among these, visual techniques encompass facial recognition [2], fingerprint scanning 

[3], iris scanning [4], and retina scanning [5]. In contrast, non-visual approaches comprise 

voice recognition [6]and signature authentication [7]. In the domains of finance, economics, 
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and legal procedures, the increasing importance of strong authentication underscores the 

criticality of preserving the integrity of signature. Such signatures, endorsed by authorized 

entities, persist as a highly reliable mode of validation often denoted as marks of endorsement 

[8]. Efforts in ensuring impregnable authentication mechanisms are intensifying, particularly 

as the importance of trustworthy signature authentication endures in critical procedures. 

 

Handwritten signatures hold a unique position within the diverse realm of biometric 

attributes, primarily attributed to their historical status as the most pervasive method of 

personal authentication, universally acknowledged by administrative and financial 

establishments as a legally accepted mode of verifying an individual's identity. Categorized 

by their data acquisition techniques, signature verification systems are divided into two 

primary classes: the offline method, termed static, and the online method, known as dynamic, 

with the latter encompassing temporal attributes like pen speed and pressure through 

specialized tools such as styluses or tablets [9]. 

 

Related Works 

Signature Verification 

The offline signature serves as a unique handwritten depiction of an individual's name or 

mark, serving as evidence of identity on financial instruments, legal papers, and other official 

records, constituting a biometric measure encompassing distinctive physical attributes; the 

authentication of such offline signatures stands as an indispensable undertaking [10]. The 

OfSV (Offline Signature Verification) system encompasses three variations: writer-dependent 

(WD), writer-independent (WI), and hybrid; while WD is the prevalent and more accurate 

approach due to user-specific verification models, it requires separate classifiers per user, 

leading to elevated complexity, whereas WI offers a more efficient and simpler to use 

alternative by using a single global classifier for all users and only requiring one signature 

sample. [11]. A recent investigation evaluated the efficacy of writer-independent (WI) offline 

signature verification (OfSV) systems based on deep learning, demonstrating enhanced 

performance through a novel real-world document stamp cleaning procedure; an alternative 

strategy involves a hybrid WD–WI OfSV system that alternates between writer- dependent 

and writer-independent methods [12]. In the process of binarization preprocessing, 

researchers have employed diverse thresholding techniques, encompassing global, local 

iterative, iterative shrinkage thresholding algorithm, adaptive, histogram-based, binary, linear 

discriminant analysis based, and distance-based methods, in order to rectify discrepancies 

within offline signature images [13]. Nevertheless, the commonly adopted global 

thresholding technique, Otsu algorithm, emerged as the prevailing choice, segmenting pixels 

of the offline signature image into foreground and background classes through a solitary 

intensity threshold [14]. Nagel and Rosenfeld [15] authored a study addressing handwritten 

forgeries on bank cheques, employing geometrical attributes such as size and slant ratios. 

Bernardete Ribeiro, Ivo Gonçalves, Sérgio Santos, and Alexander Kovacec utilized a massive 

parallel distributed neural network to achieve intricate signature representations, conducting 

experiments on the GDPS dataset to attain a three-layer configuration, two of which were 

internal, successfully introducing a two-step hybrid model to reduce misclassification without 

actual classification in their study [16]. Khalajzadeh et al. [17] introduced a convolutional 
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neural network for signature classification without prior feature knowledge, utilizing a multi-

layer perceptron for classification, conducting experiments on Persian signatures of 22 

individuals, with CNN employed as a feature descriptor and MLP for classification, training 

on 176 signatures from 22 individuals. Notably, exceptional recognition accuracies of 

99.79% and 98.71% were achieved for the GPDS synthetic and UTSig datasets respectively, 

employing the VGG16 model for both [18]. 

 

Big Transfer (BiT) 

The concept of BiT, introduced by Google Research in 2020 centers around constructing a 

robust image representation model via pretraining on an extensive and varied dataset, 

subsequently fine-tuning on particular tasks using smaller datasets, effectively harnessing 

transfer learning principles to transfer knowledge from a broader task to a more specific one 

[19]. The intentional design of BiT has been focused on showcasing its ability to be flexible, 

rendering it suitable for a broad range of tasks related to visual recognition. These tasks 

include but are not limited to recognizing objects [20], performing semantic segmentation 

[21], and classifying images into categories [22]. Its substantial dimensions and extensive 

initial training empower it to grasp complex visual depictions, which can then be refined and 

personalized to address a broad array of particular assignments. This flexibility distinguishes 

BiT as a potent instrument for addressing a variety of complex tasks within the realm of 

visual recognition [19]. 

 

This study introduces an offline methodology for signature verification, with the paper's 

structure comprising distinct segments: Section 2 involves a comprehensive review of past 

literature, Section 3 elucidates the research methodology, Section 4 deliberates on the 

obtained outcomes and discoveries, and, in culmination, Section 5 provides the paper's 

conclusive remarks. 

 

2. METHODOLOGY 

 

Proposed Model 

The research uses BiT-M-R50x1 for training the dataset.The Big Transfer (BiT) framework 

enhances transfer learning by pretraining models on diverse datasets of varying scales (BiT-

S, BiT-M, BiT-L) and employing Group Normalization and Weight Standardization to 

overcome Batch Normalization limitations. Fine-tuning involves strategies such as adjusting 

resolution during testing and setting optimal schedule lengths based on dataset size, enabling 

effective transfer to downstream tasks while capitalizing on the models' pretrained features 

and enhanced training techniques [19]. The input shape of the model was (224, 224, 3) which 

meant 224x224 images with 3 channel colour or RGB colour. BiT was used as a Keras layer 

[23] for transfer learning by not training or fine-tuning the pre-trained BiT model during the 

training process. The input layer and keras layer uses the ‘Relu’ [24] activation function and 

the Dense layer uses ‘Softmax’ [25] activation function. 
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Fig.1  Proposed model: a three-layered architecture where input layer shape is (None, 224, 

224, 3), KerasLayer shape is (None, 2048) and a Dense layer with shape (None, 2) 

 

Table1: Parameter Distribution 

Layer(type) Output Shape Parameters 

Input Layer (None, 224, 224, 3) 0 

Keras Layer (None, 2048) 23,500,352 

Dense Layer (None, 2) 4098 

 

Dataset 

The Dataset used in the research is a public access dataset from Kaggle called 

robinreni/signature-verification-dataset [26]. The dataset contains a total of 2149 images 

divided into 2 classes; Fake and Real. The dataset set has 1649 images for training and 500 

images for testing. From the training data, 20% data was taken for validation purposes. 

 

 
Fig.2 Example of dataset 
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Fig.3 Dataset Distribution 

 

Data Preprocessing 

ImageDataGenerator library by tensorflow [27] was used for data preparation. At first, the 

images were rescaled. In the realm of digital images, pixel values commonly span a spectrum 

from 0 to 255, symbolizing varying degrees of brightness or color strength. Through the 

process of dividing these pixel values by 255, a transformation occurs that effectively reduces 

their range to a scale that lies between 0 and 1. This adjustment aids in standardizing and 

normalizing the pixel values for further analysis or processing. Then training images were 

divided into 80-20 ratio for training and validation. The images were divided into batches of 

32 and the class mode was set to binary. 

 

Compiling the Model 

The loss function of choice, specifically referred to as 'sparse_categorical_crossentropy'[28], 

is employed to quantify the disparity between projected and actual values during the training 

phase. This selection is particularly apt for tasks involving multiclass classification where 

target labels are represented as integers. The optimizer 'adam' [29] is explicitly designated to 

oversee the adjustment of model weights through the process of backpropagation, utilizing its 

dynamic learning rate mechanism. For assessing performance, the code incorporates the 

"accuracy" statistic to gauge how accurately the model forecasts outcomes in comparison to 

the true labels. 

 

Table 2: Hyperparameters of the model 

Hyperparameters Values 

Loss Sparse Categorical Crossentropy 

Optimizer Adam (Lr = 0.001) 

Metrics Accuracy 

 

 

 

http://journal.hmjournals.com/index.php/JIPIRS
https://doi.org/10.55529/jipirs.35.10.19
http://creativecommons.org/licenses/by/4.0/


Journal of Image Processing and Intelligent Remote Sensing  

ISSN 2815-0953 

Vol: 03, No. 05, Aug-Sept 2023 

http://journal.hmjournals.com/index.php/JIPIRS 

DOI: https://doi.org/10.55529/jipirs.35.10.19 

 

 

 

 

The Author(s) 2023.This is an Open Access Article distributed under the CC BY license. 

(http://creativecommons.org/licenses/by/4.0/)                                                                         15 

Training the Model 

The model was trained on google colab environment where the system RAM is 12.7 GB and 

GPU RAM is 15 GB [30]. The model was trained on 5 epochs with callback checkpoint to 

save the best model. It took a total of 105 seconds to run the 5 epochs 361ms/step was 

required. 

 

3. RESULTS AND FINDINGS 

 

After 5 epochs the training accuracy was 97.63% and loss was 8.67%. The validation 

accuracy after the said number of epochs was 98.60% and validation loss was 5.57%. The 

testing accuracy of the model was 99.40% and the loss was 5.57%.   

 

 
Fig.4 Accuracy curve during Training and Validation 

 

Precision constitutes a foundational measure, calculated as the ratio of correctly forecasted 

positive instances to the total number of positive predictions [31]. It effectively addresses the 

question of how accurately instances labeled with a certain attribute truly belong to that 

specific attribute. Notably, higher precision scores align with fewer occurrences of 

incorrectly identified positives. The mathematical interpretation of precision is stated, 

 

Precision = TruePositives / (TruePositives + FalsePositives)   (1) 

 

Within our precise context, a noteworthy precision metric of around 1.00, averaged across 

two distinct class instances, was successfully attained. 

 

The performance metric known as Recall, alternatively referred to as Sensitivity or the True 

Positive Rate, assumes a crucial role in the domain of machine learning and classification 

[31]. Its purpose is to measure the proportion of actual positive instances (associated with 

particular categories) that a model accurately identifies. Recall can be shown mathematically 

as,  

 

Recall = TruePositives / (TruePositives + FalseNegatives)    (2) 
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In our specific scenario, a notable recall measure of approximately 0.976, calculated as an 

average over the range of two distinct class instances, has been accomplished. This 

substantial attainment in recall underscores the efficiency of our unique signature verification 

system. 

 

The F1 Score [32] is computed by combining precision and recall in a weighted manner, 

encompassing considerations for both false positives and false negatives. Consequently, this 

metric addresses the intricacies of classification performance. While its interpretation might 

not be as straightforward as accuracy, the F1 score often proves more useful, especially in the 

presence of class imbalances. This is because accuracy is most effective when false positives 

and false negatives have similar costs. However, in cases where the costs of these errors 

differ significantly, a closer examination of both Precision and Recall becomes necessary. 

 

F-Measure = (2 * Precision * Recall) / (Precision + Recall)             (3) 

 

In our specific scenario, the F1 score, with an average of 0.988 across the range, emerges as a 

significant performance indicator. This accomplishment underscores the system's adeptness 

in managing the complexities of signature verification, effectively considering the trade-offs 

between precision and recall within the context of uneven class proportions. 

 

4. CONCLUSIONS 

 

In summary, the proposed approach demonstrated impressive results in signature verification. 

The training phase achieved a high accuracy of 97.63% over 5 epochs with a corresponding 

loss of 8.67%. Validation reinforced this performance, achieving 98.60% accuracy and 5.57% 

validation loss. The model's robustness was evident in the exceptional 99.40% testing 

accuracy and consistent 5.57% loss, highlighting its effectiveness across real-world 

variations. 

 

Looking forward, there are promising directions for future research in the signature 

verification domain. These include delving into methods to enhance the model's 

interpretability for practical application understanding. Addressing potential class imbalances 

and refining model architecture and hyperparameters could further enhance performance. 

Rigorous testing on diverse datasets and styles would validate the model's robustness, and 

integration with emerging technologies like explainable AI and blockchain could elevate 

security and transparency in signature verification. In conclusion, this study has showcased 

an exceptional signature verification model with noteworthy metrics in accuracy, precision, 

recall, and F1 score. 
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