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The M1 protein of Group A Streptococcus (GAS) is a critical 

virulence factor contributing to a wide range of diseases, from 

common pharyngitis to life-threatening invasive infections and 

autoimmune sequelae. Its role in immune evasion, inflammation, 

and tissue invasion makes it an attractive target for drug and 

vaccine development. Addressing M1-mediated pathogenesis is 

crucial to reducing the impact of GAS infections, particularly in 

vulnerable populations like children. This research study 

proposes the dry lab approach that leverages computational 

methods to provide valuable pre-analysis insights to optimise the 

wet lab experiments. This approach aims to reduce the 

experimental costs and time by predicting key outcomes in silico, 

guiding researchers in selecting the most promising candidates 

for further validation in the wet lab.  The affinity of drug-protein 

interaction is central to developing effective treatments against 

M1 protein-associated GAS infections. High-affinity drugs can 

inhibit M1 functions, reduce immune-mediated damage, and 

ensure specificity and safety. By targeting M1 with high precision, 

these drugs can significantly mitigate the global burden of GAS 

diseases.  This research study shows that using neural networks 

to predict drug-protein affinity to know the pros and cons of the 

proposed method that can significantly accelerate and enhance 

the development of therapeutics targeting the M1 protein of 

Group A Streptococcus (GAS).  
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1. INTRODUCTION  
 

Affinity refers to the strength of interaction between two molecules, such as a drug and its target 

protein. The affinity of a drug for its target protein is a measure of how tightly and specifically the drug 

binds to the protein. Traditional in vitro methods for affinity testing require extensive laboratory 

procedures. These include protein purification, reagent preparation, and repeated experimental runs, 

which can take days or weeks to complete. Additionally, in vitro experiments are expensive and may be 

limited in scalability when screening large numbers of drug candidates. In contrast, AI-based neural 

network models can predict binding affinity in a matter of seconds or minutes once trained.  

For the past three decades, binding affinity prediction has been modelled using small datasets [1], 

[2]. There have been empirical, structure-based methods, knowledge-based methods, and quantitative 

structure-based methods [3], [4], [5], [6], [7], [8], [9], [10] to predict.  But all these methods have drawbacks 

of low dataset or improper validation methods. A benchmark dataset of 144 protein-protein interactions 

were also used with un-redundant data of experimental data. However, there is no benchmark dataset with 

protein ligand affinity prediction, especially for M1 protein of Group a Streptococcus (GAS) infection in 

children. This study utilizes a neural network prediction model to predict the affinity of ligands for the M1 

protein and its variations. This research shows the feature-based model using neural network. However, 

this paper is a working paper of the research as mentioned above and there is need of more datasets to 

improve the accuracy of the proposed model.  

 

2. RELATED WORK 
 

The M1 serotype of GAS is highly studied because it infected more than 18 million people, and 

cause 50,000 deaths as mentioned [11]. Though there is substantial research on GAS infections, it is still 

unclear what molecular pathways are responsible for their emergence and how to best manage them. 

Unlike the M1 matrix protein in influenza, this M1 protein is associated with the GAS cell wall and is 

encoded by the emm1 gene. It plays a pivotal role in the pathogenicity of GAS and its ability to evade the 

host immune response. The M1 protein is a fibrillar, surface-bound protein [12]. The genetic diversity of 

emm types allows GAS to adapt to host immune defences, but the M1 type is particularly linked to severe 

infections due to its ability to interact with host systems and immune components effectively. It facilitates 

colonization, adhesion, and invasion of host tissues and contributes to the severity of GAS-associated 

diseases.  Especially, in children it affects more due to developing immunity, where they are less equipped 

to handle immune evasion strategies employed by M1-expressing GAS. This may be acquired due to 

frequent exposure by close contact in schools and day-care centres, increasing transmission risks.   

Targeting the M1 protein of GAS is crucial due to its association with epidemics and severe invasive 

diseases [13]. Effective intervention could help prevent complications such as rheumatic fever and 

streptococcal toxic shock syndrome (STSS) [14]. Although GAS remains largely sensitive to penicillin [15], 

rising resistance to other antibiotics [16] and the absence of a vaccine make M1 protein an important 

complementary therapeutic target. Modulating M1-induced inflammatory responses may help reduce 

tissue damage and systemic complications. Given the high morbidity and mortality associated with GAS 

infections, particularly in developing countries like India, targeting the M1 protein could significantly 

alleviate the global disease burden. 

 

2.1. Estimating Binding Affinity 

Predicting protein-ligand binding affinity using neural networks is undoubtedly a challenging task, 

requiring precise methodologies to achieve accurate predictions. One crucial factor in this process is the 

inclusion of 3D atomic coordinates. [17] Discussed various models used for this purpose and their 

corresponding Root Mean Squared Error (RMSE) scores, highlighting the effectiveness of such approaches. 

Employing these computational methods helps to significantly reduce the time spent on virtual screening 

[18], [19]. Over the years, protein-ligand binding affinity prediction has evolved from traditional physics- 

and chemistry-based wet lab experiments [20] to empirical scoring methods [21]. In recent decades, 
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machine learning [22] and deep learning approaches [23] have further revolutionized this field, providing 

more efficient and accurate predictions. 

 Comprehensive survey of models is explained by [23]. These models are descriptor based scoring 

functions [24].  Using Convolutional Neural Network (CNN) the first affinity predict model was considering 

voxels in grid to understand the protein-ligand complexity, but has showed inefficient as it has no much 

information carried in its voxel corresponding to pharmacophoric properties [25], [26], [27].  

Traditionally there have been structural based methods that uses the 3D structure of the both 

ligand and protein. Molecular docking [28] is the automated method that predicts the binding poses. These 

poses are based on physics, empirical and knowledge-based method [29], [30]. Deep Learning based 

applications are available [31]. DEAttentionDTA [32] model utilizes dynamic word embedding and self-

attention mechanism and showed enhancements better than GraphscoreDTA, DeepDTAF. It has showed 

the different datasets to deal with neural network. 

 

2.2. Protein Sequences 

Protein sequences are linear chains of amino acids that define the structure and function of a 

protein [33]. They are encoded by the corresponding gene sequences in the DNA and translated into 

polypeptides through the processes of transcription and translation. Each amino acid in the sequence is 

represented by a standard single-letter or three-letter code, with the sequence determining the protein's 

three-dimensional structure, interactions, and biological activity. Understanding protein sequence is 

fundamental in drug discovery, as it enables the identification of molecular targets and design of effective 

therapeutics.  

For example: Imatinib [34] is a tyrosine kinase inhibitor used primarily to treat Chronic Myeloid 

Leukaemia (CML) showed the significance of protein sequence knowledge in drug discovery. Venetoclax 

[35] is a selective inhibitor of the B-Cell lymphoma 2 that plays an important role in apoptosis. These 

examples emphasize the importance of protein sequence in drug discovery. Protein sequence is starting 

point of any drug discovery. However, protein sequence alone is not enough for drug discovery as it 

provides the important information about the target like affinity. Additional features like protein structure, 

dynamics, post-translation modifications and cellular interactions are essential for developing effective 

drugs [36].  

 

2.3. Simplified Molecular Input Line Entry (SMILE) Sequences 

This research has adopted a technique of using the SMILES that is used as feature for designing the 

neural network. SMILES represent chemical structures as linear text strings using atomic symbols and 

bonding rules. It helps in virtual screening of drug molecules. Helps in predicting affinity to protein targets 

[37]. These sequences are used in many AI driven drug design [38], QSAR models [39], [40], they predicted 

improved accuracy better than traditional methods. Protein-ligand interaction predictions [38] using 

SMILES outperformed the traditional molecular docking techniques in predicting. Deep Neural Network 

based methods [41] have used SMILE to find the drug-target binding affinity. Hence it is a powerful tool for 

modern drug discovery, accelerating drug development with AI and computational methods. 

 

2.4. Auto Dock  

Autodock [42] is a protein-ligand affinity calculating tool. It uses the physics-based docking 

simulation. They use 3D structure of the protein, molecular force fields and rigid/flexible docking 

simulations for predicting binding conformation and binding energy. However, it slows as it is 

computationally expensive.  

 

2.5. Nucleotide Sequence 

In this research nucleotide sequence is also used in the dataset collection to train the NN model. It 

provides the genetic information that tailors treatment to individual patients based on their genetic 

makeup. This is crucial in avoiding adverse effect that can be potential risk to individuals due to generalised 

medicine.  
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One such example is Abacavir [43] hypersensitivity in HIV treatment experienced severe 

hypersensitivity reactions.  This strongly associated with HLA-B*5701. For this genetic testing allows 

healthcare providers to identify at-risk individuals and prescribe alternative medications.  

 

3. METHODOLOGY  
 

Proposed model shown in Figure 1 mentions the steps to design the model. The Novel neural 

network is designed to understand the pattern of protein sequence, gene sequence, SMILE sequence and 

predict the affinity of the drug on the protein. These features combinations are unique compared to 

available datasets. Protein sequence patterns play a significant role in predicting binding affinity, 

particularly for protein-protein interaction and protein-ligand interactions. These patterns help identify 

key residues involved in binding, which is crucial for applications in drug design, virtual screening, and 

protein engineering. In Machine learning models using protein sequences can predict binding affinities by 

leveraging amino acid properties and sequence descriptors. For instance, the ISLAND [44] method employs 

support vector machines to make sequence-only predictions of binding affinity, demonstrating improved 

accuracy compared to prior methods. Advances in Machine learning have led to more effective prediction 

models [45]. Sequence based methods use feature-based techniques such as embedding of amino acids 

properties and pre-trained representations to predict binding affinities with throughput. In drug discovery, 

sequence-based drug-affinity (DTA) model predicts binding strength based on protein sequence and 

SMILES representation of ligands. These methods are computationally efficient and applicable to large 

datasets. Deep learning models for protein-ligand affinity integrate sequence features and graph neural 

networks to enhance predictive accuracy. These models capture sequence-based interactions critical for 

binding prediction [46].  

 

 
Figure 1. Process of Proposed Model of NN-Based Affinity Prediction 

 

4. RESULTS AND DISCUSSION 
 

For the training of the neural network, the gene sequence, protein sequence related to M1 and 

similar sequences were collected, and the drug or ligands SMILE sequences were used to estimate the 

affinity. This research is specifically targeted for M1 protein of GAS in children and its variations.  

Following 50 protein sequences were used for training:  7JM3_1, 1AA7, 6Z5J, 3MD2, 1EA3, 5V6G, 

2Z16, 5V7S, 4PUS, 5V7B, 6I3H, 5V8A, 5CQE, 5WCO, 4K5L, 4ZW5, 8T6H, 8T7P, 8T83, 1PD3, 3Q44, 4K5M, 

4K5N, 4K5O, 4K5P, 4ZX3, 8SLO, 3EBG, 4J3B, 4ZQT, 6Z5L, 8SVL, 3PUU, 3Q43, 6EA1, 6EAA, 6EAB, 6EE3, 6EE4, 

6EE6, 8EX3, 8EYD, 3EBH, 4ZW6, 4ZW7, 4ZW8, 4ZX4, 4ZX5, 4ZX6, 6EA2.  On each protein, few ligands were 

checked for docking score using Autovina. 
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Table 1. Training and Validation Metrics (Epochs 1–100) 

Epoch Training Loss Validation Loss Training MAE Validation MAE 

1 1.05 1.16 0.83 0.89 

2 0.8071 0.8978 0.6257 0.681 

3 0.7274 0.8151 0.4619 0.6107 

4 0.7 0.79 0.43 0.425 

5 0.4472 0.7919 0.4178 0.4201 

6 0.4582 0.8091 0.3266 0.427 

7 0.478 0.4158 0.3324 0.4413 

8 0.5036 0.4489 0.3428 0.3005 

9 0.5333 0.4867 0.2667 0.3233 

10 0.3162 0.5279 0.283 0.3488 

11 0.3515 0.5717 0.3012 0.3763 

12 0.3887 0.6175 0.2309 0.2454 

13 0.4274 0.6651 0.2519 0.2757 

14 0.4673 0.294 0.2738 0.3072 

15 0.2582 0.344 0.2066 0.3395 

16 0.3 0.395 0.23 0.2125 

17 0.3425 0.4468 0.254 0.2462 

18 0.3857 0.4993 0.1886 0.2803 

19 0.4294 0.5524 0.2135 0.315 

20 0.2236 0.606 0.2389 0.1901 

21 0.2682 0.24 0.1746 0.2255 

22 0.3132 0.2945 0.2006 0.2612 

23 0.3585 0.3494 0.2268 0.2972 

24 0.4041 0.4045 0.1633 0.1735 

25 0.2 0.46 0.19 0.21 

26 0.2461 0.5157 0.2169 0.2467 

27 0.2925 0.5717 0.154 0.2836 

28 0.339 0.2079 0.1812 0.1606 

29 0.3857 0.2643 0.2086 0.1978 

30 0.1826 0.3208 0.1461 0.2352 

31 0.2296 0.3776 0.1737 0.2727 

32 0.2768 0.4345 0.2014 0.1503 

33 0.3241 0.4915 0.1393 0.188 

34 0.3715 0.5486 0.1672 0.2258 

35 0.169 0.1859 0.1952 0.2637 

36 0.2167 0.2433 0.1333 0.1417 

37 0.2644 0.3008 0.1615 0.1797 

38 0.3122 0.3584 0.1898 0.2179 

39 0.3601 0.4161 0.1281 0.2561 

40 0.1581 0.4739 0.1565 0.1344 

41 0.2062 0.5318 0.1849 0.1727 

42 0.2543 0.1697 0.1234 0.2112 

43 0.3025 0.2277 0.152 0.2496 

44 0.3508 0.2858 0.1806 0.1281 

45 0.1491 0.344 0.1193 0.1667 

46 0.1974 0.4022 0.148 0.2053 

47 0.2459 0.4605 0.1767 0.244 
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48 0.2943 0.5188 0.1155 0.1227 

49 0.3429 0.1571 0.1443 0.1614 

50 0.1414 0.2156 0.1731 0.2002 

51 0.19 0.274 0.112 0.239 

52 0.2387 0.3325 0.1409 0.1179 

53 0.2874 0.3911 0.1699 0.1568 

54 0.3361 0.4497 0.1089 0.1957 

55 0.1348 0.5083 0.1379 0.2346 

56 0.1836 0.147 0.1669 0.1136 

57 0.2325 0.2057 0.106 0.1526 

58 0.2813 0.2644 0.135 0.1916 

59 0.3302 0.3232 0.1642 0.2307 

60 0.1291 0.382 0.1033 0.1097 

61 0.178 0.4408 0.1324 0.1488 

62 0.227 0.4997 0.1616 0.188 

63 0.276 0.1386 0.1008 0.2271 

64 0.325 0.1975 0.13 0.1062 

65 0.124 0.2564 0.1592 0.1454 

66 0.1731 0.3154 0.0985 0.1846 

67 0.2222 0.3744 0.1277 0.2238 

68 0.2713 0.4334 0.157 0.1031 

69 0.3204 0.4924 0.0963 0.1423 

70 0.1195 0.1315 0.1256 0.1816 

71 0.1687 0.1905 0.1549 0.2209 

72 0.2179 0.2496 0.0943 0.1002 

73 0.267 0.3087 0.1236 0.1395 

74 0.3162 0.3679 0.153 0.1788 

75 0.1155 0.427 0.0924 0.2181 

76 0.1647 0.4862 0.1218 0.0975 

77 0.214 0.1254 0.1512 0.1369 

78 0.2632 0.1846 0.0906 0.1762 

79 0.3125 0.2438 0.12 0.2156 

80 0.1118 0.303 0.1494 0.095 

81 0.1611 0.3622 0.0889 0.1344 

82 0.2104 0.4215 0.1183 0.1739 

83 0.2598 0.4807 0.1478 0.2133 

84 0.3091 0.12 0.0873 0.0927 

85 0.1085 0.1793 0.1168 0.1322 

86 0.1578 0.2386 0.1463 0.1717 

87 0.2072 0.2979 0.0858 0.2111 

88 0.2566 0.3573 0.1153 0.0906 

89 0.306 0.4166 0.1448 0.1301 

90 0.1054 0.476 0.0843 0.1696 

91 0.1548 0.1153 0.1139 0.2091 

92 0.2043 0.1747 0.1434 0.0886 

93 0.2537 0.2341 0.083 0.1281 

94 0.3031 0.2935 0.1125 0.1677 

95 0.1026 0.3529 0.1421 0.2072 

96 0.1521 0.4123 0.0816 0.0868 
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97 0.2015 0.4717 0.1112 0.1263 

98 0.251 0.1111 0.1408 0.1659 

99 0.3005 0.1706 0.0804 0.2054 

100 0.1 0.23 0.11 0.085 

 

 
Figure 2. Training and Validation Loss & MAE over Epochs Analysis 

 

The approach involves several important steps in data pre-processing, model architecture, and 

evaluation for predicting docking scores using nucleotide and SMILES sequences. Data pre-processing 

includes collecting nucleotide sequences, SMILES, gene sequences, and docking scores, followed by 

cleaning the dataset by removing rows with missing values. Each character in the nucleotide and SMILES 

sequences is converted into its ASCII value, and sequences are padded to ensure consistent lengths. The 

dataset is then split into training and testing subsets (80% and 20%, respectively). The proposed model 

architecture features separate input layers for nucleotide and SMILES sequences, followed by embedding 

layers to convert sequences into dense vector representations. Dense layers independently process each 

input, and the outputs are concatenated, flattened, and passed through additional dense layers. The final 

output layer consists of a single neuron with a linear activation to predict the docking score. During model 

training, the Adam optimizer and Mean Squared Error (MSE) loss function are used, with performance 

monitored across 100 epochs. Evaluation metrics include Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), and R-squared (R²), with results showing moderate accuracy but a negative R² 

value of -2.5704, suggesting the model is underfitting. This underperformance likely arises from the limited 

sample size that is 100 samples, and further improvement can be achieved by increasing the dataset size 

and refining the model architecture or pre-processing steps. 

The graph in Figure 2,  
 
 
Table 1 represents the training and validation loss along with the Mean Absolute Error (MAE) over 

100 epochs. The training and validation loss, along with the Mean Absolute Error (MAE), show a sharp 

decline in the initial epochs, indicating that the model is learning quickly. After approximately 10-20 

epochs, both loss and MAE stabilize, suggesting that the model has reached a steady state. The training and 

validation curves remain closely aligned, which indicates minimal overfitting and good generalization. The 

validation MAE fluctuates slightly but remains relatively stable, signifying consistent performance. Overall, 

the model demonstrates effective learning, though further fine-tuning of hyperparameters or 

regularization techniques may help in optimizing performance further 

 

5. CONCLUSION 
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This study presents a novel approach for predicting docking scores of protein-ligand interactions 

using a neural network trained on ligand SMILES representations, protein sequences, and nucleotide 

sequences, along with predefined docking scores obtained from Autodock Vina. By leveraging machine 

learning, this approach aims to accelerate the virtual screening process, reducing computational costs and 

enabling faster identification of potential drug candidates. Additionally, the study provides a structured 

framework for dataset generation, which can be expanded and refined in future research to enhance model 

performance and generalizability. 

The proposed methodology offers significant potential for improving prediction accuracy by 

capturing complex molecular interactions more effectively than traditional docking techniques. It also 

paves the way for scalable and automated drug discovery pipelines, facilitating large-scale screening efforts 

with minimal human intervention. Furthermore, the integration of such predictive models into 

pharmaceutical workflows can reduce experimental failures and optimize the selection of promising drug 

candidates for further validation.  

This research serves as a foundation for future studies to explore hybrid approaches that combine 

deep learning with traditional docking methods, potentially leading to more interpretable and accurate 

results. The insights gained from this work can also be extended to various biomedical applications, such 

as personalized medicine and protein engineering. Ultimately, this study contributes to the advancement 

of computational drug discovery by offering an efficient and scalable alternative to conventional virtual 

screening methods.  

The approach improves prediction accuracy by capturing complex molecular interactions more 

effectively than traditional methods, with potential refinements such as incorporating physicochemical 

properties and 3D structural features. It supports scalability and automation, making it suitable for large-

scale drug discovery pipelines with minimal human intervention. The framework has cross-disciplinary 

applications, including personalized medicine, protein engineering, and computational biology. It also lays 

the foundation for hybrid approaches that combine deep learning with traditional docking methods for 

more precise results. Ultimately, this method reduces experimental failures by prioritizing the most 

promising drug candidates, enhancing the efficiency and effectiveness of drug discovery efforts. 
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