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Abstract: Kidney injury, a global health challenge, necessitates a nuanced understanding 

of molecular intricacies for effective interventions. Long non-coding RNAs (lncRNAs), 

once dismissed as transcriptional noise, now emerge as pivotal players in orchestrating 

renal health. Dysregulation of specific lncRNAs like TUG1, MALAT1, H19, and NEAT1 

provides molecular signatures, distinguishing physiological states from pathological 

conditions. In acute kidney injury (AKI), TUG1 and MALAT1 regulate apoptosis, 

inflammation, and fibrosis. Chronic kidney disease (CKD) involves lncRNAs like H19 and 

NEAT1 modulating cell proliferation and apoptosis. Beyond diagnostics, lncRNAs actively 

shape inflammation, apoptosis, and fibrosis, positioning them as master regulators in the 

intricate ballet of kidney health. Recent strides in research, coupled with cutting-edge 

genomics and bioinformatics tools, highlight their roles and therapeutic potential. 

Challenges in understanding their intricate roles and interactions necessitate the 

exploration of promising avenues, including single-cell RNA sequencing and artificial 

intelligence, paving the way for personalized interventions and regenerative medicine in 

kidney diseases. 
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1. INTRODUCTION 
 

The increasing global concern regarding kidney damage necessitates a focused exploration of 

its molecular intricacies for effective treatment strategies [1]. Long non-coding RNAs 

(lncRNAs), specifically those longer than 200 nucleotides, have emerged as key players in 

understanding kidney injury. These molecules, once considered transcriptional noise, now 

play crucial roles in epigenetic modification, chromatin remodeling, and gene regulation, 

influencing processes like differentiation, apoptosis, and proliferation [4]. Dysregulation of 
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lncRNAs, such as TUG1, MALAT1, H19, and NEAT1, has been linked to acute kidney 

injury (AKI) and chronic kidney disease (CKD), providing potential molecular signatures for 

diagnosis [5]. 

Highlighted lncRNAs like TUG1, elevated in AKI, control inflammation and apoptosis, while 

MALAT1 is implicated in fibrosis [7]. H19 and NEAT1 are involved in CKD, with NEAT1 

elevated in inflammation and H19 regulating cell proliferation and apoptosis [8]. 

Additionally, lncRNAs like HOTAIR and GAS5 are relevant in diabetic nephropathy (DN), 

influencing apoptosis and fibrosis [9]. These molecules serve as biomarkers differentiating 

between healthy and pathological states, challenging the notion that they are mere 

transcriptional noise [10]. 

The integration of genomics and bioinformatics tools has enhanced our understanding of 

lncRNA contributions to inflammation, apoptosis, and fibrosis, turning them from passive 

observers to active conductors in kidney pathophysiology [12-15]. In the complex dance of 

kidney health and illness, lncRNAs now take center stage as master regulators of gene 

expression and cellular activities [16]. This review emphasizes the crucial need to identify 

molecular pathways underlying kidney injury, contributing to the evolving narrative of 

lncRNAs as conductors in the intricate symphony of kidney health. 

 

2. RELATED WORK 

 

 “Non-Coding RNAs in Kidney Diseases: The Long and Short of Them” by Moreno et al. 

This paper provides a comprehensive review of the role of lncRNAs in kidney diseases, 

their molecular mechanisms, and their function as emerging prognostic biomarkers for 

both acute and chronic kidney diseases [17]. 

 “Long Non-Coding RNAs in Kidney Disease” by Ignarski et al. This paper provides an 

overview of the current knowledge on lncRNAs in both glomerular and tubulointerstitial 

kidney disease [18]. 

 “Long noncoding RNAs in renal diseases” published in ExRNA. This review summarizes 

available studies indicating that lncRNAs are heavily involved in kidney development 

and disease and proposes lncRNAs as novel biomarkers for clinical diagnosis and 

potential therapeutic targets in renal diseases [19]. 

 “Non-Coding RNA and Renal Disease” published in Frontiers Research Topic. This 

paper broadly associates the role of some ncRNAs, such as microRNAs (miRNAs) and 

long-non-coding-RNAs (lncRNAs), with acute and chronic kidney disease, diabetic 

nephropathy, fibrosis, and renal cancer [20]. 

 “The Mission of Long Non-Coding RNAs in Human Adult Renal Stem” by MDPI. This 

paper discusses the tens of thousands of lncRNA sequences expressed in the kidney and 

their implications in all phases of renal disorders [21]. 

 

3. METHODOLOGY 

 

Literature Search: Conducted a thorough search in PubMed, ScienceDirect, and Google 

Scholar using keywords like "Long Non-coding RNAs," "Kidney Injury," and "lncRNAs in 

renal diseases." Identified relevant articles, reviews, and research papers in peer-reviewed 

journals. 
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Selection Criteria: Focused on articles providing in-depth insights into molecular roles of 

lncRNAs in kidney injury, emphasizing specific ones like TUG1, MALAT1, H19, and 

NEAT1. Considered studies exploring functional roles of dysregulated lncRNAs in acute and 

chronic kidney diseases. 

 

Inclusion of Key Studies: Included seminal works like "Non-Coding RNAs in Kidney 

Diseases" by Moreno et al., "Long Non-Coding RNAs in Kidney Disease" by Ignarski et al., 

and relevant reviews from ExRNA, Frontiers Research Topic, and MDPI. 

 

Data Extraction: Extracted key data on lncRNAs' roles in kidney injury, emphasizing 

inflammation, apoptosis, and fibrosis modulation. Focused on studies using genomics, 

bioinformatics tools, and molecular biology techniques to elucidate lncRNAs' contributions. 

 

Integration of Findings: Synthesized information from various studies to construct a 

comprehensive narrative on lncRNAs' involvement in kidney health and pathology. 

Emphasized molecular mechanisms, crosstalk with other noncoding RNAs, and regulatory 

roles in inflammation, apoptosis, and fibrosis. 

 

Dysregulated lncRNAs in Kidney Injury 
There is a lot of promise for the dysregulated lncRNAs in renal damage as predictive and 

diagnostic biomarkers [22]. Blood and urine are two biological materials in which their 

altered expression patterns in kidney injury can be found [23]. Clinicians may be able to 

detect patients who are at risk of kidney damage or track the course of the illness by 

evaluating the levels of these lncRNAs [24]. When kidney damage occurs, a number of long 

non-coding RNAs (lncRNAs) are dysregulated [25]. While HOTAIR, NEAT1, LINC01619, 

LINC00355, and LINC00511 are upregulated, they also contribute to fibroblast activation, 

renal fibrosis, and the regulation of pro-inflammatory genes. MALAT1, TUG1, LINC00963, 

LINC00261, LINC00473, LINC00657, LINC00839, and LINC00908 are upregulated, 

promoting inflammation and apoptosis in kidney cells. Fibroblast growth is inhibited through 

downregulation of GAS5. These long noncoding RNAs (lncRNAs) are essential for the 

complex molecular regulation of kidney health and pathology, and they offer prospective 

targets for comprehension and manipulation of renal pathophysiology [26]. Table 1 lists the 

different lncRNAs and their roles in kidney damage. 

 

Sl. 

No. 

lncRNA 

Name 
Upregulation/Downregulation Role in Kidney Injury Reference 

1 MALAT1 Upregulated 

Promotes inflammation 

and apoptosis in kidney 

cells 

[27] 

2 HOTAIR Upregulated 

Promotes activation of 

fibroblasts and renal 

fibrosis 

[28] 

3 NEAT1 Upregulated 

Regulates pro-

inflammatory genes and 

promotes apoptosis 

[29] 
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4 TUG1 Upregulated 

Promotes inflammation 

and apoptosis in kidney 

cells 

[30] 

5 GAS5 Downregulated 
Inhibits proliferation and 

activation of fibroblasts 
[31] 

6 LINC00963 Upregulated 

Promotes inflammation 

and apoptosis in kidney 

cells 

[32] 

7 LINC01619 Upregulated 

Regulates pro-

inflammatory genes and 

promotes apoptosis 

[33] 

8 LINC00261 Upregulated 

Promotes inflammation 

and apoptosis in kidney 

cells 

[34] 

9 LINC00355 Upregulated 

Regulates pro-

inflammatory genes and 

promotes apoptosis 

[35] 

10 LINC00473 Upregulated 

Promotes inflammation 

and apoptosis in kidney 

cells 

[36] 

11 LINC00511 Upregulated 

Regulates pro-

inflammatory genes and 

promotes apoptosis 

[37] 

12 LINC00657 Upregulated 

Promotes inflammation 

and apoptosis in kidney 

cells 

[38] 

13 LINC00707 Upregulated 

Regulates pro-

inflammatory genes and 

promotes apoptosis 

[39] 

14 LINC00839 Upregulated 

Promotes inflammation 

and apoptosis in kidney 

cells 

[40] 

15 LINC00908 Upregulated 

Regulates pro-

inflammatory genes and 

promotes apoptosis 

[41] 

Table: 1 Upregulation or Downregulation of specific lncRNAs and their roles in kidney 

injury, providing a clear overview of their involvement in various aspects of renal health and 

pathology. 

 

Functional Roles oF lncRNAs 

Long noncoding RNAs (lncRNAs), once considered "junk" RNA, now emerge as crucial 

regulators influencing cellular functions and gene expression, especially in contexts like 

kidney damage [42]. This review explores their functional roles, emphasizing their 

involvement in fibrosis, apoptosis, inflammation, and interactions with other noncoding 

RNAs [43]. 
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Regulation of Inflammation: In kidney injury, lncRNAs play crucial roles in controlling the 

inflammatory response [30]. For instance, MALAT1 activates the NF-κB signaling pathway 

in renal tubular epithelial cells, inducing inflammation, while NEAT1 exposure in renal 

mesangial cells leads to the release of pro-inflammatory cytokines [44,45]. These lncRNAs 

act as scaffolds, bringing transcription factors and chromatin modifiers together, regulating 

inflammatory gene expression. Additionally, they can sequester miRNAs, acting as 

competitive endogenous RNAs (ceRNAs), and modulate signaling pathways linked to 

inflammation, such as JAK/STAT and NF-κB [46,47]. 

 

Modulation of Apoptosis: Apoptosis, a critical process in kidney injury, is regulated by 

numerous lncRNAs [32]. TUG1 induces mortality in renal tubular epithelial cells by 

sponging miR-27a, while HOTAIR inhibits renal cell death by interacting with the polycomb 

repressive complex 2 (PRC2) [48-50]. The intricate regulation of apoptosis involves 

interactions with essential apoptotic proteins, ceRNA mechanisms, and epigenetic changes 

affecting gene expression related to apoptosis [51,52]. 

 

Impact on Fibrosis: Renal fibrosis, a hallmark of chronic kidney disease, is influenced by 

various lncRNAs. MALAT1 promotes renal fibrosis by activating the TGF-β/Smad signaling 

pathway, inducing fibrotic gene production [53,54]. The lncRNA H19, through suppression 

of its target gene COL1A1 and sponging miR-29b, contributes to renal fibrosis. LncRNAs 

regulate crucial signaling pathways involved in fibrosis, including TGF-β/Smad, Wnt/β-

catenin, and Notch, by interacting with key components and regulating gene expression 

[55,56]. 

 

Crosstalk with Other Noncoding RNAs: LncRNAs interact with miRNAs, influencing 

gene expression and various processes in kidney injury. For instance, GAS5 sequesters miR-

21, preventing renal fibrosis. The intricate regulatory mechanisms involve direct base pairing 

and indirect interactions mediated by RNA-binding proteins [43, 57]. 

 

Epigenetic Regulation by lncRNAs: LncRNAs impact epigenetic changes, such as histone 

modifications and chromatin remodelling, in kidney damage. HOTAIR interacts with PRC2 

and LSD1, regulating gene expression in renal cells. ANRIL recruits PRC1 and PRC2, 

repressing target genes associated with renal fibrosis. The extensive effects of lncRNA-

mediated epigenetic regulation span critical processes like fibrosis, apoptosis, and 

inflammation [52, 58-62]. 
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Figure 1: Functional roles of lncRNAs. 

 

Molecular Mechanism oF lncRNAs 

Long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, 

intricately intertwined with diverse biological processes, including kidney damage and repair 

[63,64]. Their profound impact on the cellular and molecular milieu of the kidneys is evident 

from meticulous investigations into the molecular pathways through which they influence 

kidney injury. In the realm of acute kidney injury (AKI), various functions of lncRNAs have 

been spotlighted, with documented evidence of their variable expression and involvement in 

critical biological processes [65]. Notably, specific lncRNAs play crucial roles in the 

initiation and progression of AKI, intricately regulating pivotal biochemical pathways. For 

instance, the lncRNA TUG1 orchestrates ischemia-reperfusion (I/R)-mediated AKI by 

modulating the miR-494-3p/E-cadherin axis, highlighting their intricate regulatory functions 

in pivotal biochemical pathways implicated in AKI pathophysiology [66]. 

The influence of lncRNAs extends to diabetic nephropathy (DN), where ENST0000436340 

exacerbates podocyte damage by facilitating the interaction between PTBP1 and RAB3B. 

The role of lncRNAs in diabetic mesangial cell damage is gaining recognition, offering 

potential novel therapeutic targets for kidney diseases, including DN [67,68]. Additionally, 

the dysregulation of Hoxb3os, a lncRNA regulating mTOR signaling, is associated with 

autosomal dominant polycystic kidney disease [69]. These findings underscore the diverse 

and context-specific roles of lncRNAs in modulating the pathophysiology of various kidney 

diseases by interacting with different molecular pathways [70]. 

These context-dependent roles position lncRNAs as promising targets for innovative 

therapeutic approaches and potential biomarkers for early detection and prognosis of kidney 
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disorders. To comprehensively understand their unique biological roles and intricate 

mechanisms in kidney damage and healing, further investigation is imperative. This 

exploration could pave the way for the development of lncRNA-based treatments for a 

spectrum of renal illnesses, emphasizing the versatility and significance of lncRNAs in 

kidney injury and repair, as well as their potential role in the development and progression of 

various kidney diseases [59,71]. 

 

Clinical Implications and Therapeutic Potential of lncRNAs 
Long non-coding RNAs (lncRNAs) hold significant clinical implications and therapeutic 

potential, particularly in cancer, garnering attention for RNA-based medicines such as tiny 

interfering RNAs (RNAi) and antisense oligonucleotides (ASOs) with multiple FDA 

approvals highlighting their importance [72-74]. Serving as revolutionary biomarkers, 

elevated lncRNA H19 expression demonstrates remarkable sensitivity (90%) and specificity 

(85%) in early hepatocellular carcinoma (HCC) detection [76-78]. LncRNAs like NEAT1 

play a crucial role in real-time monitoring of pancreatic ductal adenocarcinoma (PDAC), 

providing vital information for disease tracking and treatment evaluation [79,80]. Across 

various cancers, lncRNAs, such as HOTAIR in ovarian cancer, serve as prognostic markers, 

aiding personalized treatment planning and predicting resistance to platinum-based 

chemotherapy [81,82]. In colorectal cancer and non-small cell lung cancer (NSCLC), 

lncRNAs like MALAT1 and SNHG16 function as prognostic markers, indicating poor 

prognosis, tumor aggressiveness, and disease stage. The correlation between elevated GAS5 

levels and a better prognosis in heart failure patients suggests a potential biomarker for 

predicting outcomes in cardiovascular disorders [83]. Targeting specific lncRNAs shows 

therapeutic potential in diverse disease domains, such as suppressing HOXA11 in cancer, 

demonstrating promise in reducing breast cancer cell proliferation and preventing tumor 

growth [84]. The overexpression of BDNF-AS in neurodegenerative diseases like 

Alzheimer's presents a potential treatment strategy, while CRISPR/Cas9-mediated removal of 

ANRIL in cardiovascular research improves heart function and fosters cardiac repair in mice 

after myocardial infarction [85]. Additionally, NEAT1 knockdown proves beneficial in the 

metabolic domain, enhancing insulin sensitivity and glucose metabolism in diabetic mice, 

suggesting a potential treatment target for type 2 diabetes [86]. 
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Figure: 2 Clinical implications and therapeutic potential of lncRNAs. 

 

4. RESULT AND DISCUSSION 

 

The evolving landscape of long non-coding RNAs (lncRNAs) in kidney injury presents both 

exciting possibilities and challenges. The intricate functional diversity of lncRNAs 

complicates the identification of specific roles in complex processes like kidney damage, 

hampering targeted therapy options. Understanding their activities across different cell types 

and their interactions with biomolecules remains a daunting task [83]. The lack of precise 

knowledge about how lncRNAs impact renal damage limits opportunities for targeted therapy 

[64]. Identifying reliable kidney injury biomarkers for tailored treatment and early 

intervention proves challenging, given the difficulty of distinguishing disease-specific 

lncRNAs from those indicating general stress responses [84]. 

Recent breakthroughs, notably single-cell RNA sequencing (scrRNA-seq), have 

revolutionized our understanding of lncRNA expression patterns in various kidney cell types 

[85,86]. ScrRNA-seq studies have unveiled novel lncRNAs like lnc-NEAT1, providing 

insights into their roles in podocyte destruction and chronic kidney disease (CKD) 

progression. Exploration of circular RNAs (circRNAs) has revealed their potential 

involvement in renal damage, with circRNA SMARCA5 identified as a regulator of 

autophagy to counter cisplatin-induced acute kidney injury [64]. 

The integration of artificial intelligence (AI) to predict lncRNA functions and therapeutic 

targets represents a significant advancement. AI applications, particularly in forecasting 

lncRNAs regulating inflammation in acute kidney injury, pave the way for innovative anti-

inflammatory treatments, with ongoing development of machine learning techniques [85,86]. 

Future directions in lncRNA research suggest promising avenues, including the development 

of focused kidney damage treatments and non-invasive diagnostic tools through the 

identification of disease-specific lncRNAs [82]. Research on lncRNA-based regenerative 

medicine explores the potential use of lncRNAs to promote kidney regeneration and healing 

post-injury. The concept of personalized treatment based on lncRNA expression patterns for 

specific kidney injury types and underlying genetic factors is intriguing [83]. As research 
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progresses, close attention to ethical concerns related to the use of lncRNA-based therapies 

and the evaluation of benefits and drawbacks remains imperative. 

 

5. CONCLUSION 

 

Dysregulated long non-coding RNAs (lncRNAs) like MALAT1 and TUG1 serve as 

molecular indicators for detecting renal illness, playing a significant role as regulators in 

kidney damage. These lncRNAs directly impact complex biological processes, including 

inflammation, fibrosis, and apoptosis. Beyond diagnostics, lncRNAs such as H19 and 

NEAT1 intricately interact with miRNAs, influencing the aetiology of renal diseases. With 

RNA-based therapeutics gaining prominence, lncRNAs emerge as potential therapeutic 

targets and diagnostic indicators in clinical settings, aided by recent advancements in single-

cell RNA sequencing and artificial intelligence for a deeper understanding and treatment of 

kidney injury. 
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